ABSTRACT: The Ivy Glioblastoma Atlas Project (Ivy GAP) is a detailed anatomically based transcriptomic atlas of human glioblastoma tumors. As collaborators, the Ivy Foundation funded the Allen Institute and the Swedish Neuroscience Institute to design and create the atlas. The Paul G. Allen Family Foundation also supported the project. This resource consists of a viewer interface that resolves the manually- and machine-annotated histologic images (H&E and RNA in situ hybridization) at 0.5 µm/pixel, a transcriptome browser to view and mine the anatomically-based RNA-Seq samples, an application programming interface, help documentation that describes the methods and how to use the resource, as well as SNP array data and the supporting longitudinal clinical information and MRI time course data. The resource is made available to the public without charge as part of the Ivy GAP (http://glioblastoma.alleninstitute.org/) via the Allen Institute data portal (http://www.brain-map.org), the Ivy GAP Clinical and Genomic Database (http://ivygap.org/) via the Swedish Neuroscience Institute (http://www.swedish.org/services/neuroscience-institute), and The Cancer Imaging Archive (https://wiki.cancerimagingarchive.net/display/Public/Ivy+GAP). The Ivy GAP processed data at GEO includes normalized RNA-Seq FPKM files used for analysis in "An anatomic transcriptional atlas of glioblastoma,” which is under review. Other processed data files as well as sample and donor meta-data and QC metrics are available at http://glioblastoma.alleninstitute.org/static/download.html. The raw RNA-Seq and SNP array data will be submitted to dbGaP.
Project description:The Ivy Glioblastoma Atlas Project (Ivy GAP) is a detailed anatomically based transcriptomic atlas of human glioblastoma tumors. As collaborators, the Ivy Foundation funded the Allen Institute and the Swedish Neuroscience Institute to design and create the atlas. The Paul G. Allen Family Foundation also supported the project. This resource consists of a viewer interface that resolves the manually- and machine-annotated histologic images (H&E and RNA in situ hybridization) at 0.5 µm/pixel, a transcriptome browser to view and mine the anatomically-based RNA-Seq samples, an application programming interface, help documentation that describes the methods and how to use the resource, as well as SNP array data and the supporting longitudinal clinical information and MRI time course data. The resource is made available to the public without charge as part of the Ivy GAP (http://glioblastoma.alleninstitute.org/) via the Allen Institute data portal (http://www.brain-map.org), the Ivy GAP Clinical and Genomic Database (http://ivygap.org/) via the Swedish Neuroscience Institute (http://www.swedish.org/services/neuroscience-institute), and The Cancer Imaging Archive (https://wiki.cancerimagingarchive.net/display/Public/Ivy+GAP). The Ivy GAP processed data at GEO includes normalized RNA-Seq FPKM files used for analysis in "An anatomic transcriptional atlas of glioblastoma,” which is under review. Other processed data files as well as sample and donor meta-data and QC metrics are available at http://glioblastoma.alleninstitute.org/static/download.html. The raw RNA-Seq and SNP array data will be submitted to dbGaP.
Project description:The Aging, Dementia and Traumatic Brain Injury Study is a detailed neuropathologic, molecular and transcriptomic characterization of brains of control and TBI exposure cases from a unique aged population-based cohort from the Adult Changes in Thought (ACT) study. This study was developed by a consortium consisting of the University of Washington, Kaiser Permanente Washington Health Research Institute, and the Allen Institute for Brain Science, and was supported by the Paul G. Allen Family Foundation. This freely available resource (http://aging.brain-map.org/) presents a systematic and extensive data set of study participant metadata, quantitative histology and protein measurements of neuropathology, and RNA sequencing (RNA-seq) analysis of hippocampus and neocortex. Specific methodological details are available on the “Documentation” tab at http://aging.brain-map.org/. Included in this data set are normalized RNA-Seq FPKM files used for analysis in "Neuropathological and transcriptomic characteristics of the aged brain", published in eLife. Other processed data files as well as sample and donor meta-data and QC metrics are available at http://aging.brain-map.org/download/index Controlled access to raw data files is available via https://www.niagads.org/datasets/ng00059
Project description:Ion channels and transporters have increasingly recognized roles in cancer progression through the regulation of cell proliferation, migration, and death. Glioblastoma stem-like cells (GSCs) are a source of tumor formation and recurrence in glioblastoma multiforme, a highly aggressive brain cancer, suggesting that ion channel expression may be perturbed in this population. However, little is known about the expression and functional relevance of ion channels that may contribute to GSC malignancy. Using RNA sequencing, we assessed the enrichment of ion channels in GSC isolates and non-tumor neural cell types. We identified a unique set of GSC-enriched ion channels using differential expression analysis that stratify by molecular subtype and are associated with distinct gene mutation signatures. In support of potential clinical relevance, expression of selected GSC-enriched ion channels evaluated in human glioblastoma databases of The Cancer Genome Atlas and Ivy Glioblastoma Atlas Project correlated with patient survival times. Finally, genetic knockdown or pharmacological inhibition of individual or classes of GSC-enriched ion channels constrained growth of GSCs compared to normal neural stem cells. This first-in-kind global examination characterizes ion channels enriched in GSCs and explores their potential clinical relevance to glioblastoma molecular subtypes, gene mutations, survival outcomes, regional tumor expression, and experimental responses to loss-of-function. Together, the data support the potential biological and therapeutic impact of ion channels on GSC malignancy and provide strong rationale for further examination of their mechanistic and therapeutic importance.
Project description:To understand the complexity of the brain, connectome and transcriptome maps of high resolution are being generated, but an equivalent catalogue of the brain proteome is lacking. To provide a starting point, we have performed an in-depth proteome analysis of the adult mouse brain, its major regions and cell types, which resulted in the so far largest collection of cell-type resolved protein expression data of the brain. Comparisons of the 12,934 identified proteins in oligodendrocytes, astrocytes, microglia and cortical neurons with deep sequencing data of the transcriptome indicated deep coverage of the proteome. We identified novel protein makers for different cell type and brain regions. These were validated either directly such as in case of cell types or by comparative analysis against Allen mouse brain atlas. The utility and the power of the resource were demonstrated by the identification of Lsamp, an adhesion molecule of the IgLON family, as a negative regulator of myelination in a subpopulation of neurons. Our in-depth proteome analysis of CNS cell types provides a framework towards a system-level understanding of cell type diversity in the CNS and serves as a rich resource to the neuroscience community for the better understanding of brain development and function.
Project description:Identification of puberty-associated cell composition and characterization of the unique transcriptional signatures across different cells are beneficial to specific neurons isolation and advanced understanding their functions. In this study, the whole brains of female SD rats aged PND-25, 35 and 45were performed 10 μm serial tissue sections transversely to expose ARC regions (bregma: -2.52 to 2.92 mm, interaural: 6.08 to 6.48 mm) according to Allen Brain Atlas and processed by spatial transcriptomics sequencing.