Project description:The Ivy Glioblastoma Atlas Project (Ivy GAP) is a detailed anatomically based transcriptomic atlas of human glioblastoma tumors. As collaborators, the Ivy Foundation funded the Allen Institute and the Swedish Neuroscience Institute to design and create the atlas. The Paul G. Allen Family Foundation also supported the project. This resource consists of a viewer interface that resolves the manually- and machine-annotated histologic images (H&E and RNA in situ hybridization) at 0.5 µm/pixel, a transcriptome browser to view and mine the anatomically-based RNA-Seq samples, an application programming interface, help documentation that describes the methods and how to use the resource, as well as SNP array data and the supporting longitudinal clinical information and MRI time course data. The resource is made available to the public without charge as part of the Ivy GAP (http://glioblastoma.alleninstitute.org/) via the Allen Institute data portal (http://www.brain-map.org), the Ivy GAP Clinical and Genomic Database (http://ivygap.org/) via the Swedish Neuroscience Institute (http://www.swedish.org/services/neuroscience-institute), and The Cancer Imaging Archive (https://wiki.cancerimagingarchive.net/display/Public/Ivy+GAP). The Ivy GAP processed data at GEO includes normalized RNA-Seq FPKM files used for analysis in "An anatomic transcriptional atlas of glioblastoma,” which is under review. Other processed data files as well as sample and donor meta-data and QC metrics are available at http://glioblastoma.alleninstitute.org/static/download.html. The raw RNA-Seq and SNP array data will be submitted to dbGaP.
Project description:The Ivy Glioblastoma Atlas Project (Ivy GAP) is a detailed anatomically based transcriptomic atlas of human glioblastoma tumors. As collaborators, the Ivy Foundation funded the Allen Institute and the Swedish Neuroscience Institute to design and create the atlas. The Paul G. Allen Family Foundation also supported the project. This resource consists of a viewer interface that resolves the manually- and machine-annotated histologic images (H&E and RNA in situ hybridization) at 0.5 µm/pixel, a transcriptome browser to view and mine the anatomically-based RNA-Seq samples, an application programming interface, help documentation that describes the methods and how to use the resource, as well as SNP array data and the supporting longitudinal clinical information and MRI time course data. The resource is made available to the public without charge as part of the Ivy GAP (http://glioblastoma.alleninstitute.org/) via the Allen Institute data portal (http://www.brain-map.org), the Ivy GAP Clinical and Genomic Database (http://ivygap.org/) via the Swedish Neuroscience Institute (http://www.swedish.org/services/neuroscience-institute), and The Cancer Imaging Archive (https://wiki.cancerimagingarchive.net/display/Public/Ivy+GAP). The Ivy GAP processed data at GEO includes normalized RNA-Seq FPKM files used for analysis in "An anatomic transcriptional atlas of glioblastoma,” which is under review. Other processed data files as well as sample and donor meta-data and QC metrics are available at http://glioblastoma.alleninstitute.org/static/download.html. The raw RNA-Seq and SNP array data will be submitted to dbGaP.
Project description:Ion channels and transporters have increasingly recognized roles in cancer progression through the regulation of cell proliferation, migration, and death. Glioblastoma stem-like cells (GSCs) are a source of tumor formation and recurrence in glioblastoma multiforme, a highly aggressive brain cancer, suggesting that ion channel expression may be perturbed in this population. However, little is known about the expression and functional relevance of ion channels that may contribute to GSC malignancy. Using RNA sequencing, we assessed the enrichment of ion channels in GSC isolates and non-tumor neural cell types. We identified a unique set of GSC-enriched ion channels using differential expression analysis that stratify by molecular subtype and are associated with distinct gene mutation signatures. In support of potential clinical relevance, expression of selected GSC-enriched ion channels evaluated in human glioblastoma databases of The Cancer Genome Atlas and Ivy Glioblastoma Atlas Project correlated with patient survival times. Finally, genetic knockdown or pharmacological inhibition of individual or classes of GSC-enriched ion channels constrained growth of GSCs compared to normal neural stem cells. This first-in-kind global examination characterizes ion channels enriched in GSCs and explores their potential clinical relevance to glioblastoma molecular subtypes, gene mutations, survival outcomes, regional tumor expression, and experimental responses to loss-of-function. Together, the data support the potential biological and therapeutic impact of ion channels on GSC malignancy and provide strong rationale for further examination of their mechanistic and therapeutic importance.
Project description:A use case of the benign HLA-Ligand-Atlas is the prioritization of tumor-associated targets for e.g. peptide vaccination. Based on three glioblastoma samples, we illustrated how many of these peptides are covered in the benign dataset. The experimental and computational workflow for the isolation and identification of the glioblastoma immunopeptidomes is the same, as for all samples included in the HLA Ligand Atlas. As the three glioblastoma samples are not included in the HLA Ligand Atlas dataset, they have been deposited under a separate submission.
Project description:This project investigates the role METTL8 in human glioblastoma stem cells. In order to understand the transcriptomic changes upon deletion of METTL8, we performed this ChIP-seq and further downstream analyses. From this, we hope to identify novel methods to target glioblastoma stem cells via manipulation of METTL8.
Project description:Mouse Atlas of Gene Expression Project A Quantitative and Comprehensive Atlas of Gene Expression in Mouse Development. Also available at CGAP: http://cgap.nci.nih.gov/ Keywords: LongSAGE, SAGE