Hepatic transcriptomic profiles in zebrafish exposed to surface water with pollution gradients and different industrial discharge - Part2
Ontology highlight
ABSTRACT: To assess the impact of surface water across the Hun River, several sampling sites located in the mainstream and the tributary were selected representative of pollution gradient and different pollution source. Male adult zebrafish were exposed to surface water from seven sites for 4 days. The obiectives of the study was to evaluate the ability of transcriptomic profiles exposed to surface water to determine the potential biological effects, to differentiate different pollution source, and to identify the toxic components.
Project description:To assess the impact of surface water across the Hun River, several sampling sites located in the mainstream and the tributary were selected representative of pollution gradient and different pollution source. Male adult zebrafish were exposed to surface water from seven sites for 4 days. The obiectives of the study was to evaluate the ability of transcriptomic profiles exposed to surface water to determine the potential biological effects, to differentiate different pollution source, and to identify the toxic components.
Project description:To assess the impact of surface water across the Hun River, several sampling sites located in the mainstream and the tributary were selected representative of pollution gradient and different pollution source. Human mesenchymal stem cells were exposed to organic extracts of surface water from six sites for 2 days. Microarrays were used to measure the gene expression. And the gene expression profiles were used to evaluate the ability of determine the potential biological effects, to differentiate different pollution source, and to identify the toxic components.
Project description:Hepatic transcriptomic profiles in zebrafish exposed to surface water with pollution gradients and different industrial discharge - Part2
Project description:Despite the global importance of forests, it is virtually unknown how their soil microbial communities adapt at the phylogenetic and functional level to long term metal pollution. Studying twelve sites located along two distinct gradients of metal pollution in Southern Poland revealed that both community composition (via MiSeq Illumina sequencing of 16S rRNA genes) and functional gene potential (using GeoChip 4.2) were highly similar across the gradients despite drastically diverging metal contamination levels. Metal pollution level significantly impacted microbial community structure (p = 0.037), but not bacterial taxon richness. Metal pollution altered the relative abundance of specific bacterial taxa, including Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Firmicutes, Planctomycetes and Proteobacteria. Also, a group of metal resistance genes showed significant correlations with metal concentrations in soil, although no clear impact of metal pollution levels on overall functional diversity and structure of microbial communities was observed. While screens of phylogenetic marker genes, such as 16S rRNA, provided only limited insight into resilience mechanisms, analysis of specific functional genes, e.g. involved in metal resistance, appeared to be a more promising strategy. This study showed that the effect of metal pollution on soil microbial communities was not straightforward, but could be filtered out from natural variation and habitat factors by multivariate statistical analysis and spatial sampling involving separate pollution gradients.
Project description:Despite the global importance of forests, it is virtually unknown how their soil microbial communities adapt at the phylogenetic and functional level to long term metal pollution. Studying twelve sites located along two distinct gradients of metal pollution in Southern Poland revealed that both community composition (via MiSeq Illumina sequencing of 16S rRNA genes) and functional gene potential (using GeoChip 4.2) were highly similar across the gradients despite drastically diverging metal contamination levels. Metal pollution level significantly impacted microbial community structure (p = 0.037), but not bacterial taxon richness. Metal pollution altered the relative abundance of specific bacterial taxa, including Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Firmicutes, Planctomycetes and Proteobacteria. Also, a group of metal resistance genes showed significant correlations with metal concentrations in soil, although no clear impact of metal pollution levels on overall functional diversity and structure of microbial communities was observed. While screens of phylogenetic marker genes, such as 16S rRNA, provided only limited insight into resilience mechanisms, analysis of specific functional genes, e.g. involved in metal resistance, appeared to be a more promising strategy. This study showed that the effect of metal pollution on soil microbial communities was not straightforward, but could be filtered out from natural variation and habitat factors by multivariate statistical analysis and spatial sampling involving separate pollution gradients. 12 samples were collected from two long-term polluted areas (Olkusz and Miasteczko M-EM-^ZlM-DM-^Eskie) in Southern Poland. In the study presented here, a consecutively operated, well-defined cohort of 50 NSCLC cases, followed up more than five years, was used to acquire expression profiles of a total of 8,644 unique genes, leading to the successful construction of supervised
Project description:The study comprises of 24 subjects that have been exposed to low (H) and high dose (O) ambient traffic pollution. Each subject has been exposed to 2 different exposure site. Blood samples were taken at both sites of which circulating miRNAs in plasma have been prepared
Project description:Maternal exposure to particulate air pollution increases the incidence and severity of asthma in offspring, yet the mechanisms for this are unclear. Known susceptibility loci are a minor component of this effect. We interrogate a mouse allergic airway disease model to assess epigenetic associations between maternal air pollution exposure and asthma-like responses in offspring. Maternal air pollution exposure increased allergic airway disease severity in adult offspring associated with a suppressed transcriptomic response to allergen. Control progeny showed differential expression of 2842 genes across several important pathways, including the SMAD and TGFβR pathways, whilst air pollutant progeny showed an 80% reduction in differentially expressed genes and abrogation of many pathway associations. Whole genome CpG methylome analysis following allergen challenge detected differential methylation regions across the genome. Approximately 20% of differentially expressed genes were associated with differential methylation. Differentially methylated regions were markedly reduced in offspring of air pollution exposed mothers, and this was most evident in intronic regions and some transposable element classes. This study shows that allergic airways disease in adult offspring of PM2.5 exposed mothers had a markedly repressed transcriptomic response, a proportion of which was associated with identifiable changes in the lung’s methylome. The results point to an epigenetic contribution to the severity of asthma in offspring of mothers exposed to particulate air pollution.
Project description:Maternal exposure to particulate air pollution increases the incidence and severity of asthma in offspring, yet the mechanisms for this are unclear. Known susceptibility loci are a minor component of this effect. We interrogate a mouse allergic airway disease model to assess epigenetic associations between maternal air pollution exposure and asthma-like responses in offspring. Maternal air pollution exposure increased allergic airway disease severity in adult offspring associated with a suppressed transcriptomic response to allergen. Control progeny showed differential expression of 2842 genes across several important pathways, including the SMAD and TGFβR pathways, whilst air pollutant progeny showed an 80% reduction in differentially expressed genes and abrogation of many pathway associations. Whole genome CpG methylome analysis following allergen challenge detected differential methylation regions across the genome. Approximately 20% of differentially expressed genes were associated with differential methylation. Differentially methylated regions were markedly reduced in offspring of air pollution exposed mothers, and this was most evident in intronic regions and some transposable element classes. This study shows that allergic airways disease in adult offspring of PM2.5 exposed mothers had a markedly repressed transcriptomic response, a proportion of which was associated with identifiable changes in the lung’s methylome. The results point to an epigenetic contribution to the severity of asthma in offspring of mothers exposed to particulate air pollution.