Project description:BackgroundMolecular classification of tumour clonality is currently not evaluated in multiple invasive breast carcinomas, despite evidence suggesting common clonal origins. There is no consensus about which type of data (e.g. copy number, mutation, histology) and especially which statistical method is most suitable to distinguish clonal recurrences from independent primary tumours.MethodsThirty-seven invasive breast tumour pairs were stratified according to laterality and time interval between the diagnoses of the two tumours. In a multi-omics approach, tumour clonality was analysed by integrating clinical characteristics (n = 37), DNA copy number (n = 37), DNA methylation (n = 8), gene expression microarray (n = 7), RNA sequencing (n = 3), and SNP genotyping data (n = 3). Different statistical methods, e.g. the diagnostic similarity index (SI), were used to classify the tumours as clonally related recurrences or independent primary tumours.ResultsThe SI and hierarchical clustering showed similar tendencies and the highest concordance with the other methods. Concordant evidence for tumour clonality was found in 46% (17/37) of patients. Notably, no association was found between the current clinical guidelines and molecular tumour features.ConclusionsA more accurate classification of clonal relatedness between multiple breast tumours may help to mitigate treatment failure and relapse by integrating tumour-associated molecular features, clinical parameters, and statistical methods. Guidelines need to be defined with exact thresholds to standardise clonality testing in a routine diagnostic setting.
Project description:Multiple tumours from the same patient were analysed for DNA methylation to assess tumour clonality. Seventy-four tumours corresponding to 37 patients were stratified into four groups based on the anatomic location of the multiple breast cancers (ipsilateral or bilateral) and time interval between the diagnoses (synchronous or metachronous). Ipsilateral was defined as tumours occurring in the same breast while bilateral was defined as the occurrence of tumours in both breasts. Metachronicity was defined as a time interval greater than six months between the diagnoses of the first and second tumours, while synchronicity specified that the two tumours occurred concurrently (BM: bilateral-metachronous; BS: bilateral-synchronous; IM: ipsilateral-metachronous; IS: ipsilateral-synchronous). A subset of 16 samples was randomly selected to represent each clinical group with four samples corresponding to two patients per group and analysed for DNA methylation using Illumina Infinium Human MethylationEPIC BeadChips.
Project description:Next generation sequencing panels are being used increasingly in cancer research to study tumor evolution. A specific statistical challenge is to compare the mutational profiles in different tumors from a patient to determine the strength of evidence that the tumors are clonally related, that is, derived from a single, founder clonal cell. The presence of identical mutations in each tumor provides evidence of clonal relatedness, although the strength of evidence from a match is related to how commonly the mutation is seen in the tumor type under investigation. This evidence must be weighed against the evidence in favor of independent tumors from non-matching mutations. In this article, we frame this challenge in the context of diagnosis using a novel random effects model. In this way, by analyzing a set of tumor pairs, we can estimate the proportion of cases that are clonally related in the sample as well as the individual diagnostic probabilities for each case. The method is illustrated using data from a study to determine the clonal relationship of lobular carcinoma in situ with subsequent invasive breast cancers, where each tumor in the pair was subjected to whole exome sequencing. The statistical properties of the method are evaluated using simulations, demonstrating that the key model parameters are estimated with only modest bias in small samples in most configurations.