Comparative transcriptomics reveals a conserved Bacterial Adaptive Phage Response (BAPR) to viral predation
Ontology highlight
ABSTRACT: Intrinsic and acquired defenses against bacteriophages, including Restriction/Modification, CRISPR/Cas, and Toxin/Anti-toxin systems have been intensely studied, with profound scientific impacts. However, adaptive defenses against phage infection analogous to adaptive resistance to antimicrobials have yet to be described. To identify such mechanisms, we applied an RNAseq-based, comparative transcriptomics approach in different \textit{Pseudomonas aeruginosa} strains after independent infection by a set of divergent virulent bacteriophages. A common host-mediated adaptive stress response to phages was identified that includes the Pseudomonas Quinolone Signal, through which infected cells inform their neighbors of infection, and what may be a resistance mechanism that functions by reducing infection vigor. With host transcriptional machinery left intact, we also observe phage-mediated differential expression caused by phage-specific stresses and molecular mechanisms. These responses suggest the presence of a conserved Bacterial Adaptive Phage Response mechanism as a novel type of host defense mechanism, and which may explain transient forms of phage persistence.
ORGANISM(S): Pseudomonas aeruginosa
PROVIDER: GSE109338 | GEO | 2018/01/19
REPOSITORIES: GEO
ACCESS DATA