BS008, an amiloride derivative, can regulate the alternative splicing of multiple gene transcripts in cancer cells
Ontology highlight
ABSTRACT: Alternative splicing (AS) is a process that enables a mRNA to generate different protein isoforms that may have different biological functions or properties. Cancer cells often use this maneuverability to produce proteins that contribute to growth and survival. In previous study, we found that the antihypertensive drug amiloride has a novel biological function that regulates the AS on human cancer cells. However, it also showed that the effective concentration of amiloride in cancer treatment is too high to limit its use in future therapeutic application. In this study, we therefore used computational algorithms to predict the potential amiloride derivatives and found that BS008 is the most promising compound in all derivatives. The results demonstrated that BS008 can modulate the AS of apoptotic gene transcripts, including HIPK3, SMAC, and BCLX in cancer cells. Splicing regulatory involved a variety of histone modifications and splicing factors, and accompanied the changed of phosphorylation state of SR proteins during the splicing process. Inhibition of protein phosphatase-1 with okadaic acid pretreatment partially alleviated the effects of BS008 on the AS of HIPK3 and SMAC transcripts, as well as on the phosphorylation levels of SRSF3. RNA sequencing further discovered that the AS of many other apoptosis-related gene transcripts such as AATF, ATM, AIFM1, NFKB1, and API5 was modulated by BS008. We extended the study to apoptosis-associated molecules, and detected decreased levels of BCLX and increased levels of BAX and active CASPASE-3 in BS008-induced apoptosis. In vivo experiments indicated that the treatment of tumor-bearing mice with BS008 resulted in a marked decrease in tumor size. The combination BS008/sorafenib enhances anti-tumor activity of sorafenib and allows dose reduction of sorafenib without compromising its anti-tumor activity. In conclusion, these findings suggested that BS008, an amiloride derivative, may provide therapeutic potential for cancer treatment in future.
Project description:Alternative splicing is a mechanism for increasing the protein variety of a limited number of genes. Studies have shown that aberrant regulations of the alternative splicing of apoptotic gene transcripts may contribute to the development of cancer. In this study, we isolated 4β-Hydroxywithanolide E (4bHWE) from the traditional herb Physalis peruviana, and analyzed its biological effects in cancer cells. The results demonstrated that 4bHWE modulates the alternative splicing of apoptotic genes (e.g., HIPK3, SMAC/DIABLO, and SURVIVIN), changes the expression level of splicing factors (e.g., hnRNP C1/C2, ASF/SF2, SRp20, and SRp55), and induces histone tail posttranslational modifications (e.g., H3K27me1, H3K27me2, H3K36me3, and H3K79me1). Pretreatment with okadaic acid to inhibit protein phosphatase-1 could partly relieve the effects of 4bHWE on the alternative splicing of HIPK3 and SMAC/DIABLO transcripts, as well as on the dephosphorylation of ASF/SF2. Genome-wide detection of alternative splicing further indicated that several other apoptosis-related genes are also regulated by 4bHWE, including APAF1, CARP-1, and RIPK1. Moreover, we extended our study to apoptosis-associated molecules, detecting an increasing level of CASPASE-3 activity and cleavage of poly ADP-ribose polymerase in 4bHWE-induced apoptosis. Furthermore, in vivo experiments showed that the treatment of tumor-bearing mice with 4bHWE resulted in a marked decrease of tumor size and weight. Taken together, this study is the first to show that 4bHWE affects alternative splicing through the modulations of splicing factors, providing a novel view of the antitumor mechanism of 4bHWE.
Project description:Screening small molecules and drugs for activity to modulate alternative splicing, we found that amiloride, distinct from four other intracellular pH-affecting analogues, could “normalize” the splicing of BCL-X, HIPK3 and RON/MISTR1 transcripts in human hepatocellular carcinoma Huh-7 cells. To elucidate the underlying mechanisms, our proteomic analyses of amiloride-treated cells detected hypo-phosphorylation of splicing factor SF2/ASF and also decreased levels of SRp20 and two un-identified SR proteins. We further observed decreased phosphorylation of AKT, ERK1/2 and PP1, while increased phosphorylation of p38 and JNK, suggesting that amiloride treatment down-regulated kinases and up-regulated phosphatases in the signal pathways known to affect the splicing factor protein phosphorylation. The amiloride effects of splicing factor protein hypo-phosphorylation and“normalized”oncogenic RNA splicing were both abrogated by pre-treatment with a PP1 inhibitor. We then performed global exon array analysis of Huh-7 cells treated with amiloride for 24 hours. Using gene array chips (Affymetrix GeneChip® Human Exon 1.0 ST Array of >518000 exons of 42974 genes) for exon array analysis (set parameters of correlation coefficient ≥ 0.7, splicing index ≤ -1.585 , and log2 ratio ≤ -1.585), we found that amiloride influenced the splicing patterns of 551 genes involving at least 584 exons, which included 495 known protein-coding genes involving 526 exons, many of which play key roles in functional networks of ion transport, extracellular matrix, cytoskeletons and genome maintenance. Cellular functional analyses revealed subsequent invasion and migration defects, cell cycle disruption, cytokinesis impairment, and lethal DNA degradation in amiloride-treated Huh-7 cells. This study thus provides mechanistic underpinnings for exploiting small molecule modulation of abnormal RNA splicing for cancer therapeutics. Target was prepared from 3 biological replicates of 0.5mM amiloride-treatment for 24hr and 3 control untreatment from Huh7 cell line and hybridized to the Affymetrix Human Exon 1.0 ST Array. The values of the hybridized probesets were normalized and analyzed for gene expression using dChip2010 software.
Project description:Screening small molecules and drugs for activity to modulate alternative splicing, we found that amiloride, distinct from four other intracellular pH-affecting analogues, could “normalize” the splicing of BCL-X, HIPK3 and RON/MISTR1 transcripts in human hepatocellular carcinoma Huh-7 cells. To elucidate the underlying mechanisms, our proteomic analyses of amiloride-treated cells detected hypo-phosphorylation of splicing factor SF2/ASF and also decreased levels of SRp20 and two un-identified SR proteins. We further observed decreased phosphorylation of AKT, ERK1/2 and PP1, while increased phosphorylation of p38 and JNK, suggesting that amiloride treatment down-regulated kinases and up-regulated phosphatases in the signal pathways known to affect the splicing factor protein phosphorylation. The amiloride effects of splicing factor protein hypo-phosphorylation and“normalized”oncogenic RNA splicing were both abrogated by pre-treatment with a PP1 inhibitor. We then performed global exon array analysis of Huh-7 cells treated with amiloride for 24 hours. Using gene array chips (Affymetrix GeneChip® Human Exon 1.0 ST Array of >518000 exons of 42974 genes) for exon array analysis (set parameters of correlation coefficient ≥ 0.7, splicing index ≤ -1.585 , and log2 ratio ≤ -1.585), we found that amiloride influenced the splicing patterns of 551 genes involving at least 584 exons, which included 495 known protein-coding genes involving 526 exons, many of which play key roles in functional networks of ion transport, extracellular matrix, cytoskeletons and genome maintenance. Cellular functional analyses revealed subsequent invasion and migration defects, cell cycle disruption, cytokinesis impairment, and lethal DNA degradation in amiloride-treated Huh-7 cells. This study thus provides mechanistic underpinnings for exploiting small molecule modulation of abnormal RNA splicing for cancer therapeutics.
Project description:Small-molecule Smac mimetics target inhibitor of apoptosis (IAP) proteins to induce TNFα-dependent apoptosis in cancer cells and several Smac mimetics have been advanced into clinical development as a new class of anticancer drugs. However, preclinical studies have shown that only a small subset of cancer cell lines are sensitive to Smac mimetics used as single agents and these cell lines are at risk of developing drug resistance to Smac mimetics. Thus, it is important to understand the molecular mechanisms underlying intrinsic and acquired resistance of cancer cells to Smac mimetics in order to develop effective therapeutic strategies to overcome or prevent Smac mimetic resistance. We established Smac mimetic resistant sublines derived from MDA-MB-231 breast cancer cells, which exhibit exquisite sensitivity to the Smac mimetic SM-164, and used microarrays to detail the global programme of gene expression underlying SM-164 resistance in MDA-MB-231 cells and identified differentially expressed genes in SM-164-resistant and -sensitive MDA-MB-231 cells. SCID mice with MDA-MB-231 xenograft tumors were treated with 5 mg/kg of SM-164 intravenously for 5 days/week for 2 weeks. SM-164-regressed MDA-MB-231 tumors regrew after treatment ended. Tumor cells from these regrown MDA-MB-231 tumors were isolated and total RNAs were prepared for microarray analysis.
Project description:The introduction of novel therapeutic agents has considerably improved the median survival of patients with multiple myeloma (MM). However, the natural history of the disease is characterized by continuous relapses over time. As a consequence, the development of new drugs is still required to treat MM recurrence. Here, we report for the first time the potent anti-myeloma activity of amiloride, an old potassium-sparing diuretic approved for the treatment of hypertension and edema due to heart failure. Amilorideinduced apoptosis was observed in a broad panel of MM cell lines and in xenograft mouse models. Moreover, amiloride also had a synergistic effect when combined with dexamethasone and melphalan. RNA-seq experiments showed that amiloride not only significantly altered the level of transcript isoforms and alternative splicing events, but also deregulated the spliceosomal machinery. Additionally, disruption of the splicing machinery in immunofluorescence studies was associated with the inhibition of myeloma cell viability after amiloride exposure. Although amiloride was able to induce apoptosis in myeloma cells lacking p53 expression, activation of p53 signaling was observed in wild-type and mutated TP53 cells after amiloride exposure. On the other hand, the manageable toxicity profile of amiloride is well known and we did not find a significant systemic toxicity in mice treated with amiloride. Overall, our results provide a mechanistic rationale for the use of amiloride as an alternative treatment option for relapsed MM patients.
Project description:Jörg W. Stucki & Hans-Uwe Simon. Mathematical modeling of the regulation of caspase-3 activation and degradation. Journal of Theoretical Biology 234, 1 (2005).
Caspases are thought to be important players in the execution process of apoptosis. Inhibitors of apoptosis (IAPs) are able to block caspases and therefore apoptosis. The fact that a subgroup of the IAP family inhibits active caspases implies that not each caspase activation necessarily leads to apoptosis. In such a scenario, however, processed and enzymically active caspases should somehow be removed. Indeed, IAP–caspase complexes covalently bind ubiquitin, resulting in degradation by the 26S proteasome. Following release from mitochondria, IAP antagonists (e.g. second mitochondrial activator of caspases (Smac)) inactivate IAPs. Moreover, although pro-apoptotic factors such as irradiation or anti-cancer drugs may release Smac from mitochondria in tumor cells, high cytoplasmic survivin and ML-IAP levels might be able to neutralize it and, consequently, IAPs would further be able to bind activated caspases. Here, we propose a simple mathematical model, describing the molecular interactions between Smac deactivators, Smac, IAPs, and caspase-3, including the requirements for both induction and prevention of apoptosis, respectively. In addition, we predict a novel mechanism of caspase-3 degradation that might be particularly relevant in long-living cells.
Project description:We have discovered that amiloride can produce a genome-wide effect on alternative splicing of various RNA transcripts, most importantly including those of the apoptotic factors, in K562 leukemic cells. Target was prepared from 4 biological replicates of 0.5 mM amiloride-treatment for 24hr and 3 control untreatment from K562 cells and hybridized to the Affymetrix Human Exon 1.0 ST Array. The values of the hybridized probesets were normalized and analyzed for gene expression using Partek software.
Project description:We have discovered that amiloride can produce a genome-wide effect on alternative splicing of various RNA transcripts, most importantly including those of the apoptotic factors, in K562 leukemic cells.
Project description:Small-molecule Smac mimetics target inhibitor of apoptosis (IAP) proteins to induce TNFα-dependent apoptosis in cancer cells and several Smac mimetics have been advanced into clinical development as a new class of anticancer drugs. However, preclinical studies have shown that only a small subset of cancer cell lines are sensitive to Smac mimetics used as single agents and these cell lines are at risk of developing drug resistance to Smac mimetics. Thus, it is important to understand the molecular mechanisms underlying intrinsic and acquired resistance of cancer cells to Smac mimetics in order to develop effective therapeutic strategies to overcome or prevent Smac mimetic resistance. We established Smac mimetic resistant sublines derived from MDA-MB-231 breast cancer cells, which exhibit exquisite sensitivity to the Smac mimetic SM-164, and used microarrays to detail the global programme of gene expression underlying SM-164 resistance in MDA-MB-231 cells and identified differentially expressed genes in SM-164-resistant and -sensitive MDA-MB-231 cells.
Project description:Tyrosine kinase inhibitors (TKIs), as a class of small-molecule drugs that exert anti-tumor effects by inhibiting tyrosine kinase-catalyzed phosphorylation, have been used in the treatment of various cancers. Sorafenib, as a multi-targeted TKI drug, is the first-line treatment for advanced renal cell carcinoma and unresectable hepatocellular carcinoma. However, sorafenib has repeatedly been reported to cause cardiac events in patients without a history of heart diseases during clinical use, indicating that it has cardiotoxicity. Alternative splicing of cardiac contraction-related genes happens during heart development and cardiac diseases, and is critical for heart function. However, whether alternative splicing plays a role in drug-induced cardiotoxicity remains unexplored. RBM20 is an important cardiac-specific splicing factor, mutations of which cause dilated cardiomyopathy or other cardiac dysfunctions. Rbm20 also mediates alternative splicing of genes essential for heart contraction, which is often negatively affected in drug-induced cardiotoxicity. Existing studies do not fully explain the mechanism of sorafenib cardiotoxicity, and none of the relationship between cardiotoxicity of sorafenib and alternative splicing mediated by tissue-specific splicing factors, such as Rbm20, have been reported. In order to explore whether cardiac-specific alternative splicing plays a role in sorafenib-induced cardiotoxicity, we establish both cell and animal models of cardiotoxicity, and obtain the following results: (1) By constructing a rat animal model administered with sorafenib, we find that sorafenib causes abnormal cardiac function in rats, and the genes that undergo alternative splicing in rat hearts are related to cytoskeleton of actin; (2) Alternatively spliced genes induced by sorafenib in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are enriched in sarcomere, actin filament, calcium transient regulation, mitochondria, all of which are critical for cardiac contraction. These genes are associated with dilated cardiomyopathy, hypertrophic cardiomyopathy and other cardiomyopathy; (3) Sorafenib induces a decrease in the expression of cardiac-specific splicing factor RBM20; (3) Many genes whose splicing are altered by sorafenib overlap with Rbm20 targets, indicating that sorafenib may affect alternative splicing through Rbm20; (4) Sorafenib induces pathogenic alternative splicing of FHOD3, which is a RBM20 target gene and participates in myocardial sarcomere formation. Sorafenib also affects alternative splicing of SLC25A3, which encodes a phosphate transporter on the mitochondrial inner membrane and regulates ATP synthesis; (5) Enhancing the expression of RBM20 rescues the cardiotoxicity of sorafenib by reducing apoptosis and increasing ATP levels, which is mediated by reversing the alternative splicing of FHOD3 and SLC25A3 induced by sorafenib. This paper uncovers that sorafenib reduces the expression of RBM20 to cause pathogenic alternative splicing of genes related to myocardial sarcomere and energy mechanism, resulting in abnormal myocardial function. Increasing the expression of RBM20 reverses the alternative splicing of FHOD3 and SLC25A3 associated with cardiac sarcomeres and mitochondria respectively, rescuing the cardiotoxicity of sorafenib.