Project description:AGO-PAR-CLIP was employed to identify microRNA binding sites in BCBL-1, a Kaposi's sarcoma-associated herpesvirus (KSHV) infected B-cell line and DG75, a KSHV negative B-cell line as a control. By using our novel computational method (PARma) and differential analysis of PAR-CLIP data, highly accurate target sites of KSHV microRNAs can be defined. Examination of microRNA target sites in two different cell lines using replicate PAR-CLIP experiments
Project description:AGO-PAR-CLIP was employed to identify microRNA binding sites in BCBL-1, a Kaposi's sarcoma-associated herpesvirus (KSHV) infected B-cell line and DG75, a KSHV negative B-cell line as a control. By using our novel computational method (PARma) and differential analysis of PAR-CLIP data, highly accurate target sites of KSHV microRNAs can be defined.
Project description:Crosslinking and immunoprecipitation (CLIP) is increasingly used to map transcriptome-wide binding sites of RNA-binding proteins (RBPs). We developed a method for CLIP data analysis and applied it to compare 254 nm CLIP with PAR-CLIP, which involves crosslinking of photoreactive nucleotides with 365 nm UV light. We found small differences in the accuracy of these methods in identifying binding sites of HuR, a protein that binds low-complexity sequences and Argonaute 2, which has a complex binding specificity. We show that crosslink-induced mutations lead to single-nucleotide resolution for both PAR-CLIP and CLIP. Our results confirm the expectation from original CLIP publications that RNA-binding proteins do not protect sufficiently their sites under the denaturing conditions used during the CLIP procedure, and we show that extensive digestion with sequence-specific ribonucleases strongly biases the set of recovered binding sites. We finally show that this bias can be substantially reduced by milder nuclease digestion conditions. We performed duplicate experiments for each variant of the CLIP protocol (CLIP, PAR-CLIP), each protein (HuR, Ago2), and enzymatic digestion (complete T1 digestion, mild MNase digestion). In addition, we performed a single PAR-CLIP experiment with mild T1 digestion.
Project description:The identification of RNAs that are recognized by RNA-binding proteins (RNA-BPs) using techniques such as Crosslinking and Immunoprecipitation (CLIP) has revolutionized the genome-wide discovery of RNA-BP RNA targets. Among the different versions of CLIP that have been developed, the use of photoactivable nucleoside analogs has resulted in high efficiency photoactivable ribonucleoside-enhanced CLIP (PAR-CLIP) in vivo. Nonetheless, PAR-CLIP has not yet been applied in prokaryotes. To determine if PAR-CLIP can be used in prokaryotes, we determined suitable conditions for the incorporation of 4-thiouridine (4SU), a photoactivable nucleoside, into E. coli RNA and for the isolation of RNA crosslinked to RNA-BPs of interest. Applying this technique to Hfq, a well-characterized regulator of small RNA (sRNA)-messenger RNA (mRNA) interactions, we showed that PAR-CLIP identified most of the known sRNA targets of Hfq, as well as functionally relevant sites of Hfq-mRNA interactions at nucleotide resolution. Based on our findings, PAR-CLIP represents an improved method to identify both the RNAs and the specific regulatory sites that are recognized by RNA-BPs in prokaryotes.
Project description:In order to identify YBX1 binding sites on endogenous RNA, we performed HITS-CLIP on endogenous YBX1 We used a previously published method to perform HITS-CLIP on endogenous YBX1 (Licatalosi D, et al. 2008, Nature 456:464-U22)
Project description:Crosslinking and immunoprecipitation (CLIP) is increasingly used to map transcriptome-wide binding sites of RNA-binding proteins (RBPs). We developed a method for CLIP data analysis and applied it to compare 254 nm CLIP with PAR-CLIP, which involves crosslinking of photoreactive nucleotides with 365 nm UV light. We found small differences in the accuracy of these methods in identifying binding sites of HuR, a protein that binds low-complexity sequences and Argonaute 2, which has a complex binding specificity. We show that crosslink-induced mutations lead to single-nucleotide resolution for both PAR-CLIP and CLIP. Our results confirm the expectation from original CLIP publications that RNA-binding proteins do not protect sufficiently their sites under the denaturing conditions used during the CLIP procedure, and we show that extensive digestion with sequence-specific ribonucleases strongly biases the set of recovered binding sites. We finally show that this bias can be substantially reduced by milder nuclease digestion conditions.
Project description:In order to identify TARBP2 binding sites on endogenous RNA, we performed HITS-CLIP on a myc-tagged TARBP2 expressing cell-line (transient transfection) Cells were transfected with tagged TARBP2 vector (Origene) and 48-hr post-transfection, they were subjected to the HITS-CLIP procedure (Licatalosi D, et al. 2008, Nature 456:464-U22)