Single-nucleotide resolution dynamic repair maps of UV damage in Saccharomyces cerevisiae genome
Ontology highlight
ABSTRACT: We have adapted the eXcision Repair-sequencing (XR-seq) method to generate single-nucleotide resolution dynamic repair maps of UV-induced cyclobutane pyrimidine dimers (CPDs) and (6-4) pyrimidine-pyrimidone photoproducts [(6-4)PPs] in the Saccharomyces cerevisiae genome. We find that these photoproducts are removed from the genome primarily by incisions 13-18 nucleotides 5’ and 6-7 nucleotides 3’ to the UV damage that generate 21-27 nt-long excision products. Analyses of the excision repair kinetics both in single genes and at the genome-wide level reveal strong transcription-coupled repair of the transcribed strand (TS) at early time points followed by predominantly non-transcribed strand (NTS) repair at later stages. We have also characterized the excision repair level as a function of transcription level. The availability of high-resolution and dynamic repair maps should aid in future repair and mutagenesis studies in this model organism.
ORGANISM(S): Saccharomyces cerevisiae
PROVIDER: GSE110621 | GEO | 2018/04/12
REPOSITORIES: GEO
ACCESS DATA