Project description:To characterize anaerobic stress-induced expression in adhE mutants, the microarray experiment was performed with two serotypes of wild type E. coli and their adhE mutants: (1) K-12 strain, wild type; (2) B strain, wild type; (3) BW25113, adhE mutants; (4) BL21(DE3), adhE mutants. Under anaerobic growth condition in glucose-containing complex medium, the wild type strains 1 and 2 grew well whereas the mutant strains 3 and 4 experienced anaerobic stress and grew after 24 hours and 48 hours, respectively. For each of the four strains, RNA sampling was done after six hours of growth under anaerobic condition. Only one replicate was obtained for each strain.
Project description:To characterize anaerobic stress-induced expression in adhE mutants, the microarray experiment was performed with two serotypes of wild type E. coli and their adhE mutants: (1) K-12 strain, wild type; (2) B strain, wild type; (3) BW25113, adhE mutants; (4) BL21(DE3), adhE mutants. Under anaerobic growth condition in glucose-containing complex medium, the wild type strains 1 and 2 grew well whereas the mutant strains 3 and 4 experienced anaerobic stress and grew after 24 hours and 48 hours, respectively.
Project description:A comparative transcriptome approach was used to assess genes involved in metabolism and pathogenesis that are specifically activated during anaerobic growth of the spore-forming food-borne human pathogen Bacillus cereus ATCC 14579. Growth under anaerobic conditions in Brain Heart Infusion broth revealed a reduced growth rate and a lower yield as compared to that under aerobic conditions. Comparative transcriptome analysis of cells harvested at early- and mid-exponential growth phase, transition phase and stationary phase, subsequently showed hundreds of genes to be induced under anaerobic condition. These included novel genes identified for anaerobic growth of B. cereus, encoding metabolic pathways, such as the arginine deiminase pathway (ArcABDC), a formate dehydrogenase (FdhF) and a pyruvate fomate lyase (Pfl), and alternative respiratory proteins, such as arsenate reductases. Furthermore, the nitrosative stress response was induced in the anaerobic transition phase of growth, conceivably due to the production of nitric oxide as a by-product of nitrite and nitrate respiration. Notably, both hemolytic enzyme and enterotoxin encoding genes were activated in different oxygen limiting conditions, i.e. hemolytic enzyme encoding genes were induced during anaerobic growth, whereas enterotoxin encoding genes were induced in the transition and stationary phase of aerobic cultures reaching a high cell density. These data point to metabolic rearrangements, stress adaptation and activation of the virulent status of B. cereus under anaerobic conditions, such as encountered in the human GI-tract. Keywords: time course, anaerobic growth
Project description:The ability of certain Pseudomonas (P.) species to grow or persist in anoxic habitats by either denitrification, acetate fermentation or arginine fermentation has been described in several studies as a special property. Previously, we had isolated strains belonging to the species P. lundensis, P. weihenstephanensis and P. fragi from anoxic MAP minced beef and further proved their anaerobic growth in vitro on agar plates. This follow-up study investigated the anaerobic growth of two strains per respective species in situ on inoculated chicken breast fillet under 100% N2 modified atmosphere. We were able to prove anaerobic growth of all six strains on chicken breast fillet with cell division rates of 0.2-0.8 /day. Furthermore, we characterized the anaerobic metabolic lifestyle of these Pseudomonas strains by comparative proteomics, upon their cultivation in meat simulation media, which were constantly gassed with either air or 100% N2 atmospheres. From these proteomic predictions, and respective complementation by physiological experiments, we conclude that the Pseudomonas strains P. fragi, P. weihenstephanensis, P. lundensis exhibit a similar anaerobic lifestyle and employ arginine fermentation via the arginine deiminase (ADI) pathway to grow anaerobically also on MAP meats. Furthermore, glucose fermentation to ethanol via the ED-pathway is predicted to enable long term survival but no true growth, while respiratory growth with nitrate as alternative electron acceptor or glucose fermentation to acetate could be excluded due to absence of essential genes. The citric acid cycle is partially bypassed by the glyoxylate shunt, functioning as the gluconeogenetic route without production of NADH2 under carbon limiting conditions as e.g. in packaged meats. Triggered by an altered redox balance, we also detected upregulation of enzymes involved in protein folding as well as disulphide bonds isomerization under anoxic conditions as a counteracting mechanism to reduce protein misfolding. Hence, this study reveals the mechanisms enabling anaerobic grow and persistence of common meat-spoiling Pseudomonas species, and further complements the hitherto limited knowledge of the anaerobic lifestyle of Pseudomonas species in general.
Project description:the gene expression profiling results provide important information for the genes regulated by crosstalk between Shp2 and Pten mediated signal pathways Total RNA was extracted from CD71mid Ter119high erythroblasts isolated from the bone marrow of wide type, Shp2 knock-out, Pten knock-out and double knock-out mice
Project description:The role of rpoS gene in the formation of Escherichia coli biofilms were investigated. The gene expression was compared among E. coli MG1655 wild type strain and rpoS knock-out strain in the biofilms, the planktonic exponential phase, and the planktonic stationary phase. The analysis revealed that the wild type bilfilms (WBF) showed similar pattern of gene expression with the WT planktonic stationary phase (WS), whereas the rpoS knock-out biofilms (MBF) showed similar pattern of gene expression with the wild type planktonic exponential phase (WE). Genes involved in the energy metabolism and the flagella synthesis showed higher expression in the rpoS knock-out biofilms (MBF), but not in the wild type biofilms (WBF). Moreover, genes involved in the stress responses showed higher expression in the wild type biofilms (WBF), but not in the rpoS knock-out biofilms (MBF). Keywords: cell type comparison (biofilms vs planktonic cells, wild type vs rpoS knock-out strains)