The KNOXI gene SHOOT MERISTEMLESS regulates floral fate in Arabidopsis
Ontology highlight
ABSTRACT: Plants have evolved a unique and conserved developmental program that enables the conversion of leaves into floral organs. Elegant genetic and molecular work has identified key regulators of floral meristem identity. However, further understanding of flower meristem specification has been hampered by redundancy and by pleiotropic effects. The KNOXI gene STM transcription factor is a well-characterized regulator of shoot apical meristem maintenance. stm loss-of-function mutants arrest shortly after germination, and therefore the knowledge on later roles of STM, including flower development, is limited. Here, we uncover a role for STM in the specification of flower meristem identity. Silencing STM in the AP1 expression domain in the ap1-4 mutant background resulted in a complete leafy-like flower phenotype and an intermediate stm-2 allele enhanced the floral meristem identity phenotype of ap1-4. Transcriptional profiling of STM perturbation suggested that STM activity affects multiple meristem identity and flower transition genes, among them the F-Box gene UFO. In agreement, stm-2 enhanced the ufo-2 floral meristem fate phenotype, and ectopic UFO expression rescued the leafy flowers in genetic backgrounds with compromised AP1 and STM activities. This work suggests a molecular mechanism that underlies the activity of STM in the specification of flower meristem identity.
Project description:Flower development is a dynamics process in which floral organs are produced from pools of stem cells residing in meristems (Smyth et al., 1990). In order to obtain a high resolution map of the changes of gene expression during this process thus to provide insights into specific expression patterns and their underlying gene regulatory networks, an inducible system which allows us to obtain synchronized flowers (Wellmer et al., 2006) was used to collect stage-specific floral tissues at four stages (stages 0, 2, 4 and 8) for transcriptome profiling by RNA-seq . These stages represent the status of inflorescence meristem, floral meristem specification, floral organ specification and floral organ differentiation, respectively during Arabidopsis flower development.
Project description:The transcription factors LEAFY (LFY) and APETALA1 (AP1)_together with the AP1 paralog CAULIFLOWER (CAL)_control the onRep_of flower development in a partially redundant manner. This redundancy is thought to be mediated_at least in part_through the regulation of a shared Rep_of target genes. However_whether these genes are independently or cooperatively regulated by LFY and AP1/CAL_is currently unknown. To better understand the regulatory relationship between LFY and AP1/CAL during floral initiation_we monitored the activity of LFY in the absence of AP1/CAL function. We found that the regulation of several known LFY target genes is unaffected by AP1/CAL perturbation_while others appear to require AP1/CAL activity. Furthermore_we obtained evidence that LFY and AP1/CAL control the expression of some genes in an antagonistic manner. Notably_these include key regulators of floral initiation such TERMINAL FLOWER1 (TFL1)_which had been previously reported to be directly repressed by both LFY and AP1. We show here that TFL1 expression is suppressed by AP1 but promoted by LFY. We further demonstrate that LFY has an inhibitory effect on flower formation in the absence of AP1/CAL activity. We propose that LFY and AP1/CAL may act as part of an incoherent feed-forward loop to control the establishment of a stable developmental program for the formation of flowers.
Project description:The transcription factors LEAFY (LFY) and APETALA1 (AP1), together with the AP1 paralog CAULIFLOWER (CAL), control the onset of flower development in a partially redundant manner. This redundancy is thought to be mediated, at least in part, through the regulation of a shared set of target genes. However, whether these genes are independently or cooperatively regulated by LFY and AP1/CAL, is currently unknown. To better understand the regulatory relationship between LFY and AP1/CAL during floral initiation, we monitored the activity of LFY in the absence of AP1/CAL function. We found that the regulation of several known LFY target genes is unaffected by AP1/CAL perturbation, while others appear to require AP1/CAL activity. Furthermore, we obtained evidence that LFY and AP1/CAL control the expression of some genes in an antagonistic manner. Notably, these include key regulators of floral initiation such TERMINAL FLOWER1 (TFL1), which had been previously reported to be directly repressed by both LFY and AP1. We show here that TFL1 expression is suppressed by AP1 but promoted by LFY. We further demonstrate that LFY has an inhibitory effect on flower formation in the absence of AP1/CAL activity. We propose that LFY and AP1/CAL may act as part of an incoherent feed-forward loop to control the establishment of a stable developmental program for the formation of flowers.
Project description:The MADS-domain transcription factor APETALA1 (AP1) is a key regulator of Arabidopsis flower development. To understand the molecular mechanisms underlying AP1 function, we identified its target genes during floral initiation using a combination of gene expression profiling and genome-wide binding studies. Many of its targets encode transcriptional regulators, including known floral repressors. The latter genes are down-regulated by AP1, suggesting that it initiates floral development by abrogating the inhibitory effects of these genes. While AP1 acts predominantly as a transcriptional repressor during the earliest stages of flower development, regulatory genes known to be required for floral organ formation were found to be activated by AP1 at more advanced stages, indicating a dynamic mode of action. Our results further imply that AP1 orchestrates floral initiation by integrating growth, patterning and hormonal pathways.
Project description:The MADS-domain transcription factor APETALA1 (AP1) is a key regulator of Arabidopsis flower development. To understand the molecular mechanisms underlying AP1 function, we identified its target genes during floral initiation using a combination of gene expression profiling and genome-wide binding studies. Many of its targets encode transcriptional regulators, including known floral repressors. The latter genes are down-regulated by AP1, suggesting that it initiates floral development by abrogating the inhibitory effects of these genes. While AP1 acts predominantly as a transcriptional repressor during the earliest stages of flower development, regulatory genes known to be required for floral organ formation were found to be activated by AP1 at more advanced stages, indicating a dynamic mode of action. Our results further imply that AP1 orchestrates floral initiation by integrating growth, patterning and hormonal pathways. We used the AP1-GR system to conduct chromatin immunoprecipitation experiments with AP1-specific antibodies followed by deep-sequencing (ChIP-Seq) in order to determine AP1 binding sites on a genome-wide scale. Samples were generated from tissue in which the AP1-GR protein was induced for 2h using a single treatment of 1 uM DEX to the shoot apex. As control, we performed ChIP experiments using the same antibody on uninduced tissue. Experiments were done in two biological replicates.
Project description:Plant inflorescence-to-floral phase transition is an important developmental stage, in which floral cell identities and many traits of reproductive organs are determined. Two MADS-domain transcription factors, APETALA1 (AP1) and CAULIFLOWER (CAL), have been known as master regulators controlling the early stage of the phase transition in Arabidopsis. In plants with loss-of-function alleles of ap1 and cal double mutations, flower development is heavily delayed at the flower initiation stage and accumulate a large number of inflorescence-like meristem cells compared to wild-type plants, resulting in a cauliflower-like phenotype. To facilitate investigation on molecular mechanisms during inflorescence-to-floral phase transition, an inducible system of synchronized floral development has been developed, in which ap1,cal inflorescence-like meristem cells express a fusion protein of AP1 and the hormone-binding domain of the rat glucocorticoid receptor (GR) driven by 35S constitutive promoter. When inflorescences of 35S:AP1-GR ap1,cal plants are treated by steroid hormone dexamethasone as the activator to allow the AP1-GR fusion protein translocate into nucleus, inflorescence-to-floral phase transition is triggered and plants start to produce hundreds of relatively synchronized floral buds. To explore molecular basis at early stage of flower development in Arabidopsis, we used the inducible system of synchronized floral development (35S:AP1-GR ap1,cal) to profile transcriptome change of meristem cells during inflorescence-to-floral phase transition by strand-specific RNA-sequencing.
Project description:The MADS genes encode transcription factors (TF) that act as master regulators of plant reproduction and flower development. The SEPALLATA (SEP) MADS subfamily is not only absolutely required for the development of floral organs, but also plays roles in inflorescence architecture and determinacy of the floral meristem. The SEPs act as organizers of MADS complexes and are able to form both heterodimers and heterotetramers in vitro. To date, the MADS TF complexes characterized in angiosperm floral organ development contain at least one SEP TF. Whether DNA-binding by SEP-containing dimeric MADS complexes are sufficient for launching floral organ identity programs, however, is not clear as only defects in floral meristem determinacy were observed in tetramerization impaired SEP mutants. Here we used a combination of genome-wide binding studies, high resolution structural studies of the SEP3-AGAMOUS tetramerisation domain, structure-based mutagenesis and complementation experiments in sep1 sep2 sep3 and sep1 sep2 sep3 ag-4 plants transformed with versions of SEP3 encoding tetramerization mutants. We demonstrate that while SEP3 heterodimers are able to bind DNA both in vitro and in vivo and recognize the majority of SEP3 wild type binding sites genome-wide, tetramerisation is not only required for floral meristem determinacy, but also absolutely required for floral organ identity in the second, third and fourth whorls.
Project description:Floral organs, whose identity is determined by specific combinations of homeotic genes, originate from a group of undifferentiated cells called the floral meristem. In Arabidopsis, the homeotic gene AGAMOUS (AG) terminates meristem activity and promotes development of stamens and carpels. To understand the program of gene expression activated by AG, we followed genome-wide expression during early stamen and carpel development. Experiment Overall Design: Described in Gomez-Mena et al, 2005, Development 132: 429-438. Briefly, synchronous development of stamens and carpels was initiated by steroid treatment of plants homozygous for the ap1-1 and cal-1 mutations and expressing a fusion between AGAMOUS and the rat glucocorticoid receptor (35S:AGGR). RNA was extracted one, three and seven days after steroid treatment; two independent steroid-treated samples and two independent untreated controls were used for each time point.
Project description:OsMADS1 in rice is an important transcription factor in controlling flower development, not only in flower organs development, but also in floral meristem determinacy. Early flower panicle we used is a high expression stage for OsMADS1. We used microarrays to detail the global gene expression underlying functions of OsMADS1 in rice flower development.
Project description:Several pathways conferring environmental flowering responses in Arabidopsis converge on developmental processes that mediate floral transition in the shoot apical meristem. Many characterized mutations disrupt these environmental responses, but downstream developmental processes have been more refractory to mutagenesis. We constructed a quintuple mutant impaired in several environmental pathways and showed that it possesses severely reduced flowering responses to changes in photoperiod and ambient temperature. RNA-seq analysis of the quintuple mutant showed that the expression of genes encoding gibberellin biosynthesis enzymes and transcription factors involved in the age pathway correlates with flowering. Mutagenesis of the quintuple mutant generated two late-flowering mutants, quintuple ems 1 (qem1) and qem2. The mutated genes were identified by isogenic mapping and transgenic complementation. The qem1 mutant was an allele of ga20ox2, confirming the importance of gibberellin for flowering in the absence of environmental responses. By contrast, the qem2 mutation is in CHROMATIN REMODELING 4 (CHR4), which has not been genetically implicated in floral induction. Using co-immunoprecipitation, RNA-seq and ChIP-seq, we show that CHR4 interacts with transcription factors involved in floral meristem identity and affects expression of key floral regulators. We conclude that CHR4 mediates the response to endogenous flowering pathways in the inflorescence meristem to promote floral identity.