Gene expression analysis of prostate cancer cells treated with fatty acid synthase (FASN) inhibitor IPI-9119
Ontology highlight
ABSTRACT: Alterations in gene expression following fatty acid synthase inhibtion were evaluated in androgen sensitive LNCaP cells and castration resistant 22Rv1 and LNCaP-95 cells. Cell were exposed to 2 concentrations (0.1 and 0.5 uM) of FASN inhibitor IPI-9119 or DMSO for 6 days.
Project description:The fatty acid synthase (FASN) is the major fat synthesizing enzyme. FASN is an indispensable enzyme because mice with genetic deletion of Fasn are not viable. Apart from its physiological function, previous studies indicated that FASN could also exert a pathophysiological role, in the heart, because patients with heart failure showed up-reguation of FASN. To investigate the in vivo function of FASN up-regulation in the heart, we generated mice with myocardium-specific expression of FASN under control of the alpha-MHC promoter. Two different founder lines were generated with high and low FASN over-expression. Microarray gene expression profiling of heart tissue was performed of heart tissue from transgenic mice with high and low FASN expression Microarray gene expression profiling was performed with heart tissue isolated from three study groups: (i) Transgenic mice with high cardiac FASN expression, (ii) transgenic mice with low cardiac FASN expression, and (iii) B6 control mice.
Project description:The fatty acid synthase (FASN) is the major fat synthesizing enzyme. FASN is an indispensable enzyme because mice with genetic deletion of Fasn are not viable. Apart from its physiological function, previous studies indicated that FASN could also exert a pathophysiological role, in the heart, because patients with heart failure showed up-reguation of FASN. To investigate the in vivo function of FASN up-regulation in the heart, we generated mice with myocardium-specific expression of FASN under control of the alpha-MHC promoter. Two different founder lines were generated with high and low FASN over-expression. Microarray gene expression profiling of heart tissue was performed of heart tissue from transgenic mice with high and low FASN expression
Project description:We examined FASN knockdown LNCaP cells obtained by shRNA transduction with Mission lentiviral transduction particles (SHCLNV-NM 00410, TRCN3128, Sigma) (FASN-RNAi cells). In this study, we used cells transfected with non-targeting shRNA as a control (control-RNAi cells). The expression of genes related to cellular proliferation (phospholipase A2, group IVA, PLA2G4A; tensin 3, TNS3; glypican 4 GPC4), cell adhesion and extracellular matrix organization [peroxidasin homolog (Drosophila) PXDN; sarcoglycan epsilon, SGCE; von Willebrand factor, VWF; hydroxysteroid (17-beta) dehydrogenase 12, HSD17B12; cysteine-rich secretory protein LCCL domain containing 2, CRISPLD2], and cell motility (TNS3, RAP2B member of RAS oncogene family, RAP2B) were shown to be down-regulated by FASN inhibition with RNAi. FASN inhibition led to down-regulation of the PLA2G4A and HSD17B12 genes encoding phospholipase A2 and 17-beta hydroxysteroid dehydrogenase, respectively, which are the key enzymes related to production of an intracellular second messenger arachidonic acid and androgen hormones, both playing roles in promotion of tumor progression. We also found that the genes related to arachidonic acid signalling, including RGS2, SPAG16, VWF and RAP2B, were also suppressed with FASN inhibition. Gene expression profiling therefore demonstrated that FASN inhibition induces down-regulation of genes related to cell proliferation, cell adhesion, migration, and invasion, as well as the production of arachidonic acid and androgen hormones, both of which drive tumor progression.
Project description:We examined FASN knockdown LNCaP cells obtained by shRNA transduction with Mission lentiviral transduction particles (SHCLNV-NM 00410, TRCN3128, Sigma) (FASN-RNAi cells). In this study, we used cells transfected with non-targeting shRNA as a control (control-RNAi cells). The expression of genes related to cellular proliferation (phospholipase A2, group IVA, PLA2G4A; tensin 3, TNS3; glypican 4 GPC4), cell adhesion and extracellular matrix organization [peroxidasin homolog (Drosophila) PXDN; sarcoglycan epsilon, SGCE; von Willebrand factor, VWF; hydroxysteroid (17-beta) dehydrogenase 12, HSD17B12; cysteine-rich secretory protein LCCL domain containing 2, CRISPLD2], and cell motility (TNS3, RAP2B member of RAS oncogene family, RAP2B) were shown to be down-regulated by FASN inhibition with RNAi. FASN inhibition led to down-regulation of the PLA2G4A and HSD17B12 genes encoding phospholipase A2 and 17-beta hydroxysteroid dehydrogenase, respectively, which are the key enzymes related to production of an intracellular second messenger arachidonic acid and androgen hormones, both playing roles in promotion of tumor progression. We also found that the genes related to arachidonic acid signalling, including RGS2, SPAG16, VWF and RAP2B, were also suppressed with FASN inhibition. Gene expression profiling therefore demonstrated that FASN inhibition induces down-regulation of genes related to cell proliferation, cell adhesion, migration, and invasion, as well as the production of arachidonic acid and androgen hormones, both of which drive tumor progression. Total RNA isolation was performed with a Micro-to-Midi total RNA purification system (Invitrogen). The integrity of total RNAs was evaluated using an Agilent 2100 Bioanalyzer (Agilent Technologies). Low Input Quick Amp Labeling Kit, one-color (Agilent Technologies) was used to prepare Cy3-labelled target cRNA according to the manufacturer's instructions. Labeled cRNAs were hybridized with a SurePrint G3 Human GE 8M-CM-^W60K Microarrays (Agilent Technologies). Two separate hybridizations were performed for each sample. Array images were captured using a DNA Microarray Scanner (Agilent Technologies), and data were analyzed using Feature Extraction Software (Agilent Technologies) to obtain background-corrected signal intensities. The data were further analysed with GeneSpring GX Software (Version 11.0, Agilent Technologies). After filtering of data, mRNAs differentially expressed in target versus control were considered using the Fisher exact test, followed by multiple corrections using the Benjamini and Hochberg false discovery rate (FDR) method. Gene sets with a FDR q-value < 0.05 were considered significant.
Project description:Human prostate cancer cells treated with shCSN5(sh37) or CSN5 inhibitior (CSN5i-3). Cells were treated with DMSO, 1uM (in C4-2), 5uM (in LNCaP, 22Rv1) or 10 uM (in PC3) CSN5i-3 for 48 hours. Cells were prepared for RNA-seq.
Project description:Fatty acid synthase is a major enzyme involved in de novo lipogenesis, associated with energy homeostasis, lipid storage and signalling in normal liver cells. The effect of fatty acid synthase knockdown in normal liver cells (THLE 2) using siRNA mediated gene silencing were assesed for global gene deregulations. The deregulated metabolism, cell signalling and cell cycle pathway related gene expressions were analysed. Statistical significance values were also recorded. This expermental analysis clearly points to a important biochemical role for FASN in normal liver cell physiology. Total RNA was extracted from the THLE 2 cells transfected with FASN siRNA at 48h, along with its untransfected control cells. cDNA converted samples were run on microarray platform- Illumina HumanHT-12 V4.0 expression beadchip
Project description:Extracellular vesciles (EVs) have an important role in the tumor progression. However, the precise regulatrory mechanisms of EV secretion has not been clarified yet. We performed quantitive high-throughput screening to eluciade the key miRNAs for EV biogenesis in castration resistant prostate cancer (CRPC) using 22RV1 cells, and miR-1908 was selected as the miRNA regulating EV biogenesis in CRPC. To identify the genes that could be targeted by miR-1908, we performed mRNA micorarray analysis in 22RV1 after transfected of miR-1908 mimic or control miRNA.
Project description:Building on the observation that metastatic, castration-resistant prostate cancer (CRPC) correlates with activation of Src-family tyrosine kinases, we showed that the expression of activated Src renders LNCaP androgen-independent. Here, we report on RNA-seq and/or AR ChIP-seq analyses of LNCaP, LNCaP[Src], VCaP, 22Rv1 cells grown in the presence or absence of 10 nM DHT for 16h, or LuCaP35.1 tumors grown in androgen-supplemented vs. castrated mice (androgen-dependent vs. castration-resistant). We identify an 11-gene Src-induced signature found only in CRPC in response to DHT, and moreover, the differentail expression of a subset (DPP4, BCAT1, CNTNAP4, CDH3) correlates with earlier PC metastasis onset and poorer survival.