Gene expression profiles in brown fat tissues of wild type (WT) and Tsku knock out mice
Ontology highlight
ABSTRACT: Mice lacking TSKU exhibited elevated core body temperature and were unable to adequately suppress energy expenditure during starvation, leading to greater body weight loss. Tsku null mice were strongly resistant to diet-induced obesity and its associated metabolic disorders, including insulin resistance and hepatic steatosis. This metabolic phenotype was associated with sympathetic activation and enhanced brown fat thermogenesis. Here we used microarrays to uncover the metabolic pathways relevant to the phenotype induced by Tsku deficiency.
Project description:Brown adipose tissue (BAT) is best known for thermogenesis. Whereas numerous studies in rodents found tight associations between the metabolic benefits of BAT and enhanced whole-body energy expenditure, emerging evidence in humans suggests that BAT is protective against Type 2 diabetes independent of body-weight. The underlying mechanism for this dissociation remained unclear. Here, we report that impaired mitochondrial flux of branched-chain amino acids (BCAA) in BAT, by deleting mitochondrial BCAA carrier (MBC, encoded by Slc25a44), was sufficient to cause systemic insulin resistance without affecting whole-body energy expenditure or body-weight. We found that brown adipocytes catabolized BCAAs in the mitochondria as essential nitrogen donors for the biosynthesis of glutamate, N-acetylated amino acids, and one of the products, glutathione. BAT-selective impairment in mitochondrial BCAA flux led to elevated oxidative stress and insulin resistance in the liver, accompanied by reduced levels of BCAA-nitrogen derived metabolites in the circulation. In turn, supplementation of glutathione restored insulin sensitivity of BAT-specific MBC knockout mice. Notably, a high-fat diet rapidly impaired BCAA catabolism and the synthesis of BCAA-nitrogen derived metabolites in the BAT, while cold-induced BAT activity is coupled with an active synthesis of these metabolites. Together, the present work uncovers a mechanism through which brown fat controls metabolic health independent of thermogenesis via BCAA-derived nitrogen carriers acting on the liver.
Project description:Brown adipose tissue (BAT) is best known for thermogenesis. Whereas numerous studies in rodents found tight associations between the metabolic benefits of BAT and enhanced whole-body energy expenditure, emerging evidence in humans suggests that BAT is protective against Type 2 diabetes independent of body-weight. The underlying mechanism for this dissociation remained unclear. Here, we report that impaired mitochondrial flux of branched-chain amino acids (BCAA) in BAT, by deleting mitochondrial BCAA carrier (MBC, encoded by Slc25a44), was sufficient to cause systemic insulin resistance without affecting whole-body energy expenditure or body-weight. We found that brown adipocytes catabolized BCAAs in the mitochondria as essential nitrogen donors for the biosynthesis of glutamate, N-acetylated amino acids, and one of the products, glutathione. BAT-selective impairment in mitochondrial BCAA flux led to elevated oxidative stress and insulin resistance in the liver, accompanied by reduced levels of BCAA-nitrogen derived metabolites in the circulation. In turn, supplementation of glutathione restored insulin sensitivity of BAT-specific MBC knockout mice. Notably, a high-fat diet rapidly impaired BCAA catabolism and the synthesis of BCAA-nitrogen derived metabolites in the BAT, while cold-induced BAT activity is coupled with an active synthesis of these metabolites. Together, the present work uncovers a mechanism through which brown fat controls metabolic health independent of thermogenesis via BCAA-derived nitrogen carriers acting on the liver.
Project description:Tissue resident macrophages provide a systemic innate immune defense network and critically contribute to establishment and maintenance of tissue homeostasis. Here we used constitutive and inducible mutagenesis to delete the nuclear transcription regulator methyl-CpG binding protein 2 (MeCP2) in defined tissue macrophages. Animals lacking the Rett syndrome-associated gene in macrophages did not show signs of neurodevelopmental disorder, but surprisingly displayed altered body composition and spontaneous obesity. This phenotype involved neither hyper-phagia, primary hyper-insulinemia nor inflammation, but rather could be linked to impaired brown adipose tissue (BAT) function. Specifically, mutagenesis of a BAT-resident CX3CR1+ macrophage subpopulation compromised homeostatic, though not acute cold-induced thermogenesis. Mechanistically, steady state BAT malfunction of pre-obese mice harboring mutant macrophages was associated with decreased sympathetic innervation and lower local norepinephrine titers, resulting in reduced adipocyte expression of the thermogenic factors UCP1 and DIO2. Mutant macrophages were found to over-express PlexinA4, which might contribute to the phenotype by repulsion of Sema6A-expressing sympathetic axons. Collectively, we report a previously unappreciated homeostatic role of macrophages in the control of tissue innervation, disruption of which in BAT results in metabolic imbalance.
Project description:Adipose tissues (ATs) are innervated by sympathetic nerves, which drive reduction of fat mass via lipolysis and thermogenesis. Here, we report a population of immunomodulatory leptin receptor (LepR)-expressing barrier cells which ensheath sympathetic axon bundles in adipose tissues. These LepR-expressing Sympathetic Perineurial Cells (SPCs) produce IL33, a factor for maintenance and recruitment of regulatory T cell (Treg) and eosinophils in AT. Brown adipose tissues (BAT) of mice lacking IL33 in SPCs (SPCIL33cKO) have fewer Treg and eosinophils, resulting in increased BAT inflammation. These SPCIL33cKO mice are more susceptible to diet-induced obesity, independently of food intake. Furthermore, SPCIL33cKO mice have impaired adaptive thermogenesis, and are unresponsive to leptin-induced rescue of metabolic adaptation. We, therefore, identify LepR-expressing SPCs as a source of IL33 which orchestrate an anti-inflammatory environment in BAT, preserving sympathetic-mediated thermogenesis and body weight homeostasis. LepR+ IL33+SPCs provide a cellular link between leptin and immune regulation of body weight, unifying neuroendocrinology and immunometabolism as previously disconnected fields of obesity research.
Project description:Brown adipose tissue plays a crucial role in modulating whole-body energy expenditure through the thermogenic function of its mitochondrial respiratory chain. Pharmacological interventions targeting this function hold significant therapeutic promise. Thus, gaining a comprehensive understanding of the pathophysiological regulation of brown adipose tissue is imperative for future therapeutic applications. In this study, we investigated the metabolic mechanisms underlying the regulation of mature brown adipocyte function by the mitochondrial respiratory chain. Our findings indicate that deficiency in mitochondrial complex I in mature brown adipocytes leads to lipidomic remodeling. This remodeling results in an increase in arachidonic acid content and prostaglandin E2 (PGE2) production, leading to reduced transcriptional activity of peroxisome proliferator-activated receptor gamma (PPARγ) and peroxisome proliferator-activated receptor alpha (PPARα) and alterations in the content of PPAR activator complexes, which consequently result in reduced brown adipocyte thermogenesis and peroxisomal gene expression in mature brown adipocyte. In summary, our study elucidates that the mitochondrial-derived arachidonic acid signal regulates brown adipocyte thermogenesis and peroxisome biogenesis by modulating the PPAR activator complex."
Project description:Adaptive thermogenesis of brown adipose tissue (BAT) is critical for thermoregulation and contributes to total energy expenditure. However, whether BAT has non-thermogenic functions is largely unknown. Here, we describe that mice with a BAT-specific Liver kinase b1 deletion (Lkb1BKO mice) exhibited impaired mitochondrial respiration and thermogenesis in BAT, but reduced adiposity and liver triglyceride accumulation under high-fat-diet feeding at room temperature. Importantly, these metabolic benefits were also present in Lkb1BKO mice at thermoneutrality, where BAT thermogenesis was not required. Mechanistically, decreased mRNA levels of mtDNA-encoded electron transport chain (ETC) subunits and ETC proteome imbalance led to impaired mitochondrial respiration in BAT of Lkb1BKO mice. Furthermore, reducing mtDNA gene expression directly in BAT by removing mitochondrial transcription factor A (Tfam) in BAT also showed ETC proteome imbalance and the tradeoff between BAT thermogenesis and systemic metabolism at both room temperature and thermoneutrality. Collectively, our data demonstrates that ETC proteome imbalance in BAT regulates systemic metabolism independently of BAT thermogenic capacity.
Project description:Great progress has been made in identifying positive regulators that activate adipocyte thermogenesis, but negative regulatory signaling of thermogenesis remains poorly understood. Here, we found that cardiotrophin-like cytokine factor 1 (CLCF1) signaling led to loss of brown fat identity, which impaired thermogenic capacity. CLCF1 levels decreased during thermogenic stimulation but were considerably increased in obesity. Adipocyte-specific CLCF1 transgenic (CLCF1-ATG) mice showed impaired energy expenditure and severe cold intolerance. Elevated CLCF1 triggered whitening of brown adipose tissue by suppressing mitochondrial biogenesis. Mechanistically, CLCF1 bound and activated ciliary neurotrophic factor receptor (CNTFR) and augmented signal transducer and activator of transcription 3 (STAT3) signaling. STAT3 transcriptionally inhibited both peroxisome proliferator-activated receptor-γ coactivator (PGC) 1α and 1β, which thereafter restrained mitochondrial biogenesis in adipocytes. Inhibition of CNTFR or STAT3 could diminish the inhibitory effects of CLCF1 on mitochondrial biogenesis and thermogenesis. As a result, CLCF1-TG mice were predisposed to develop metabolic dysfunction even without external metabolic stress. Our findings revealed a previously unknown brake signal on nonshivering thermogenesis and suggested that targeting this pathway could be used to restore brown fat activity and systemic metabolic homeostasis in obesity.
Project description:Thyroid hormones are important for homeostatic control of energy metabolism and body temperature. Although skeletal muscle is considered an important site for thyroid action, the contribution of thyroid hormone receptor signaling, in muscle, to whole-body energy metabolism and body temperature has not been resolved. Here, we show that thyroid hormone-induced increase in energy expenditure requires thyroid hormone receptor alpha 1 (TRa1) in skeletal muscle, but that thyroid hormone induced elevation in body temperature is independent of muscle-TRa1. In slow-twitch soleus muscle, ablation of TRa1 leads to an altered fiber type composition toward a more oxidative phenotype, which, however, does not influence running capacity or motivation to voluntary running. RNA-sequencing of soleus muscle from WT mice and TRaHSACre mice revealed differentiated transcriptional regulation of genes associated with muscle thermogenesis, such as sarcolipin and UCP3, thus providing molecular clues pertaining to the mechanistic underpinnings of TRa1-linked control of whole-body metabolic rate. Together, this work establishes a fundamental role for skeletal muscle in thyroid hormone-stimulated increase in whole-body energy expenditure.
Project description:Activation of brown fat thermogenesis increases energy expenditure and alleviates obesity. Sympathetic nervous system (SNS) is important in brown/beige adipocyte thermogenesis. Here we discover a novel fat-derived “adipokine” neurotrophic factor neurotrophin 3 (NTF3) and its receptor Tropomyosin receptor kinase C (TRKC) as key regulators of SNS growth and innervation in adipose tissue. NTF3 is highly expressed in brown/beige adipocytes, and potently stimulates sympathetic neuron neurite growth. NTF3/TRKC regulates a plethora of pathways in neuronal axonal growth and elongation. Adipose tissue sympathetic innervation is significantly increased in mice with adipocyte-specific NTF3 overexpression, but profoundly reduced in mice with TRKC haploinsufficiency (TRKC+/-). Increasing NTF3 via pharmacological or genetic approach promotes beige adipocyte development, enhances cold-induced thermogenesis and protects against diet-induced obesity (DIO); whereas TRKC+/- mice or SNS TRKC deficient mice are cold intolerant and prone to DIO. Thus, NTF3 is an important fat-derived neurotrophic factor regulating SNS innervation, energy metabolism and obesity.
Project description:Various physiological stimuli, such as cold environment, diet, and hormones, trigger brown adipose tissue (BAT) to produce heat through sympathetic nervous system (SNS)- and -adrenergic receptors (ARs). The AR stimulation increases intracellular cAMP levels through heterotrimeric G proteins and adenylate cyclases, but the processes by which cAMP modulates brown adipocyte function are not fully understood. Here we described that specific ablation of cAMP production in brown adipocytes led to reduced lipolysis, mitochondrial biogenesis, uncoupling protein 1 (Ucp1) expression, and consequently defective adaptive thermogenesis. Elevated cAMP signaling by sympathetic activation inhibited Salt-inducible kinase 2 (Sik2) through protein kinase A (PKA)-mediated phosphorylation in brown adipose tissue. Inhibition of SIKs enhanced Ucp1 expression in differentiated brown adipocytes and Sik2 knockout mice exhibited enhanced adaptive thermogenesis at thermoneutrality in an Ucp1-dependent manner. Taken together, our data indicate that suppressing Sik2 by PKA-mediated phosphorylation is a requisite for SNS-induced Ucp1 expression and adaptive thermogenesis in BAT, and targeting Sik2 may present a novel therapeutic strategy to ramp up BAT thermogenic activity in humans.