Spatio-temporal m(i)RNA architecture and 3' UTR regulation in the C. elegans germline
Ontology highlight
ABSTRACT: In animal germlines, regulation of cell proliferation and differentiation is particularly important but poorly understood. Here, using a cryo-cut approach, we mapped RNA expression along the Caenorhabditis elegans germline and, using mutants, dissected gene regulatory mechanisms that control spatio-temporal expression. We detected, at near single-cell resolution, > 10,000 mRNAs, > 300 miRNAs and numerous unannotated miRNAs. Most RNAs were organized in distinct spatial patterns. Germline-specific miRNAs and their targets were co-localized. Moreover, we observed differential 3’ UTR isoform usage for hundreds of mRNAs. In tumorous gld-2 gld-1 mutants, gene expression was strongly perturbed. In particular, differential 3’ UTR usage was significantly impaired. We propose that PIE-1, a transcriptional repressor, functions to maintain spatial gene expression. Our data also suggest that cpsf-4 and fipp-1 control differential 3’ UTR usage for hundreds of genes. Finally, we constructed a “virtual gonad” enabling “virtual in situ hybridizations” and access to all data (https://shiny.mdc-berlin.de/spacegerm/).
ORGANISM(S): Caenorhabditis elegans
PROVIDER: GSE115884 | GEO | 2018/11/15
REPOSITORIES: GEO
ACCESS DATA