An extracellular Argonaute protein mediates export of repeat-associated small RNAs into vesicles in parasitic nematodes
Ontology highlight
ABSTRACT: Mobile small RNAs are an integral component of the arms race between plants and fungal parasites, and several studies suggest microRNAs could similarly operate between parasitic nematodes and their animal hosts. However, whether and how specific sequences are selected for export by parasites is unknown. Here we describe a specific Argonaute protein (exWAGO) that is secreted in extracellular vesicles (EVs) released by the gastrointestinal nematode Heligmosomodies bakeri, at multiple copies per EV. Phylogenetic and gene expression analyses demonstrate exWAGO is highly conserved and abundantly expressed in related parasites, including the human hookworm and proteomic analyses confirm this is the only Argonaute secreted by rodent parasites. In contrast, exWAGO orthologues in species from the free-living genus Caenorhabditis are highly diverged. By sequencing multiple small RNA libraries, we determined that the most abundant small RNAs released from the nematode parasite are not microRNAs but rather secondary small interfering RNAs (siRNAs) that are produced by RNA-dependent RNA Polymerases. We further identify distinct evolutionary properties of the siRNAs resident in free-living or parasitic nematodes versus those exported in EVs by the parasite and show that the latter are specifically associated with exWAGO. Together this work identifies an Argonaute protein as a mediator of RNA export and suggests rhabditomorph nematode parasites may have co-opted a novel nematode-unique pathway to communicate with their hosts.
ORGANISM(S): Caenorhabditis elegans Heligmosomoides bakeri
PROVIDER: GSE117169 | GEO | 2019/02/21
REPOSITORIES: GEO
ACCESS DATA