Project description:High-throughput sequencing of mixed-stage Caenorhabditis elegans small RNAs. total RNA, ~18-26nt RNAs isolated using PAGE, ligation to adapters requires 5' monophosphate and 3' OH Keywords: high-throughput 454 sequencing
Project description:BACKGROUND: Plant small RNAs (sRNAs) associated with virulent virus infections have been reported by previous studies, while the involvement of sRNAs in latent virus infection remains largely uncharacterised. Apple trees show a high degree of resistance and tolerance to viral infections. We analysed two sRNA deep sequencing datasets, prepared from different RNA size fractions, to identify sRNAs involved in Apple stem grooving virus (ASGV) infection. RESULTS: sRNA analysis revealed virus-derived siRNAs (vsiRNAs) originating from two ASGV genetic variants. A vsiRNA profile for one of the ASGV variants was also generated showing an increase in siRNA production towards the 3' end of the virus genome. Virus-derived sRNAs longer than those previously analysed were also observed in the sequencing data. Additionally, tRNA-derived sRNAs were identified and characterised. These sRNAs covered a broad size-range and originated from both ends of the mature tRNAs as well as from their central regions. Several tRNA-derived sRNAs showed differential regulation due to ASGV infection. No changes in microRNA, natural-antisense transcript siRNA, phased-siRNA and repeat-associated siRNA levels were observed. CONCLUSIONS: This study is the first report on the apple sRNA-response to virus infection. The results revealed the vsiRNAs profile of an ASGV variant, as well as the alteration of the tRNA-derived sRNA profile in response to latent virus infection. It also highlights the importance of library preparation in the interpretation of high-throughput sequencing data.
Project description:Positional cloning of mutations in model genetic systems is a powerful method for the identification of targets of medical and agricultural importance. To facilitate the high-throughput mapping of mutations in Caenorhabditis elegans, we have identified a further 9602 putative new single nucleotide polymorphisms (SNPs) between two C. elegans strains, Bristol N2 and the Hawaiian mapping strain CB4856, by sequencing inserts from a CB4856 genomic DNA library and using an informatics pipeline to compare sequences with the canonical N2 genomic sequence. When combined with data from other laboratories, our marker set of 17,189 SNPs provides even coverage of the complete worm genome. To date, we have confirmed >1099 evenly spaced SNPs (one every 91 +/- 56 kb) across the six chromosomes and validated the utility of our SNP marker set and new fluorescence polarization-based genotyping methods for systematic and high-throughput identification of genes in C. elegans by cloning several proprietary genes. We illustrate our approach by recombination mapping and confirmation of the mutation in the cloned gene, dpy-18.