Leading edge airway epithelial cell responses to in vitro wounding
Ontology highlight
ABSTRACT: The airway epithelium of asthmatics is characterized by intrinsically abnormal wound repair that may contribute to disease pathobiology. In this study, we show that in asthma, the airway epithelial cells at the leading edge of a wound display aberrant migration patterns, reduced expression of α5 and β1 integrin subunits at baseline and during wound repair, resulting in dysregulated cell migration and an inability to fully repair. Transcriptional profiling identified the PI3K/Akt signaling pathway as the top upstream transcriptional regulator of integrin α5β1. Significantly, activation of Akt signaling enhanced airway epithelial repair in cultures derived from asthmatic children via upregulation of α5 and β1 integrin subunits. Conversely, inhibition of the PI3K/Akt signaling pathway in airway epithelial cultures from non-asthmatic children attenuated epithelial repair and reduced α5 and β1 integrin expression. Importantly, the FDA-approved drug celecoxib, and its non-COX2 inhibitory analogue dimethyl-celecoxib, also stimulated the PI3K/Akt/integrin α5β1 axis and restored airway epithelial repair in cells from asthmatics. Thus, targeting the PI3K/Akt pathway may represent a novel therapeutic avenue for asthma.
ORGANISM(S): Homo sapiens
PROVIDER: GSE117489 | GEO | 2020/03/25
REPOSITORIES: GEO
ACCESS DATA