Project description:Pancreatic islet cells derived from human pluripotent stem cells hold great promise for modeling and treating diabetes. Differences between stem cell-derived and primary islets remain, but molecular insights to inform improvements are limited. Here, we acquire single-cell transcriptomes and accessible chromatin profiles during in vitro islet differentiation and from primary childhood and adult pancreas for comparison. We delineate major cell types, define their regulomes, and describe spatiotemporal regulatory relationships between transcription factors. CDX2 emerged as a regulator of enterochromaffin-like cells, which we show resemble a previously unrecognized, transient CDX2-expressing β-cell-related population in fetal pancreas, arguing against a non-pancreatic origin as proposed. Furthermore, we observe insufficient activation of signal-dependent transcriptional programs during in vitro β-cell maturation and identify sex hormones as drivers of childhood β-cell proliferation. Altogether, our analysis provides a comprehensive understanding of cell fate acquisition in stem cell-derived islets and a framework for manipulating cell identities and maturity.
Project description:Pancreatic islet cells derived from human pluripotent stem cells hold great promise for modeling and treating diabetes. Differences between stem cell-derived and primary islets remain, but molecular insights to inform improvements are limited. Here, we acquire single-cell transcriptomes and accessible chromatin profiles during in vitro islet differentiation and from primary childhood and adult pancreas for comparison. We delineate major cell types, define their regulomes, and describe spatiotemporal regulatory relationships between transcription factors. CDX2 emerged as a regulator of enterochromaffin-like cells, which we show resemble a previously unrecognized, transient CDX2-expressing β-cell-related population in fetal pancreas, arguing against a non-pancreatic origin as proposed. Furthermore, we observe insufficient activation of signal-dependent transcriptional programs during in vitro β-cell maturation and identify sex hormones as drivers of childhood β-cell proliferation. Altogether, our analysis provides a comprehensive understanding of cell fate acquisition in stem cell-derived islets and a framework for manipulating cell identities and maturity.
Project description:This study provides an assessment of the Fluidigm C1 platform for RNA sequencing of single mouse pancreatic islet cells. The system combines microfluidic technology and nanoliter-scale reactions. We sequenced 622 cells allowing identification of 341 islet cells with high-quality gene expression profiles. The cells clustered into populations of alpha-cells (5%), beta-cells (92%), delta-cells (1%) and PP-cells (2%). We identified cell-type specific transcription factors and pathways primarily involved in nutrient sensing and oxidation and cell signaling. Unexpectedly, 281 cells had to be removed from the analysis due to low viability (23%), low sequencing quality (13%) or contamination resulting in the detection of more than one islet hormone (64%). Collectively, we provide a resource for identification of high-quality gene expression datasets to help expand insights into genes and pathways characterizing islet cell types. We reveal limitations in the C1 Fluidigm cell capture process resulting in contaminated cells with altered gene expression patterns. This calls for caution when interpreting single-cell transcriptomics data using the C1 Fluidigm system. Single-cell RNA sequencing of mouse C57BL/6 pancreatic islet cells
Project description:We report the single-cell RNA-seq based identification of 6 known human islet cell types (alpha cells, beta cells, delta cells, pp cells, acinar cells and duct cells) based on the expression of known marker genes. We further assess cell type specific gene expression and suggest novel marker genes for several cell types. Transcriptional dissection of human pancreatic islets of one donor using single-cell RNA-seq