Project description:DNA methylation has a role in the pathogenesis of essential hypertension. DNA N6-methyladenine (6mA) modification as a novel adenine methylation exists in human tissues, but whether it plays a role in hypertension development remains unclear. Here, we reported that the global 6mA DNA level in leukocytes was significantly reduced in patients with hypertension and was reversed with successful treatment. Age, systolic blood pressure, and serum total cholesterol and high-density lipoprotein levels were associated with decreased leukocyte 6mA DNA level. Elevated ALKBH1 (AlkB homolog 1), a demethylase of 6mA, level mediated this dynamic change in 6mA level in leukocytes and vascular smooth muscle cells in hypertension mouse and rat models. Knockdown of ALKBH1 suppressed angiotensin II-induced vascular smooth muscle phenotype transformation, proliferation and migration. ALKBH1-6mA directly and negatively regulated hypoxia inducible factor 1 ? (HIF1?), which responded to angiotensin II-induced vascular remodeling. Collectively, our results demonstrate a potential epigenetic role for ALKBH1-6mA regulation in hypertension development, diagnosis and treatment.
Project description:Genetic drivers of cancer can be dysregulated through epigenetic modifications of DNA. While the critical role of DNA 5-methylcytosine (5mC) in the regulation of transcription is recognized, the functions of other non-canonical DNA modifications remain obsure. Here, we report the identification of novel N(6)-methyladenine (N6-mA) DNA modifications in human tissues and implicate this epigenetic regulation in human disease, the highly malignant brain cancer, glioblastoma. Glioblastoma upregulates N6-mA levels, which co-localize with heterochromatic histone modifications, namely H3K9me3. N6-mA levels are dynamically regulated by the DNA demethylase, ALKBH1, to transcriptionally silence oncogenic pathways through decreasing chromatin accessibility. Targeting the N6-mA regulator, ALKBH1, in patient-derived human glioblastoma models inhibited tumor cell proliferation and extended survival of tumor-bearing mice, supporting this novel DNA modification as a potential new molecular therapeutic target for glioblastoma. Collectively, our results uncover a novel epigenetic node in cancer through the DNA modification, N6-mA.
Project description:Genetic drivers of cancer can be dysregulated through epigenetic modifications of DNA. While the critical role of DNA 5-methylcytosine (5mC) in the regulation of transcription is recognized, the functions of other non-canonical DNA modifications remain obscure. Here, we report the identification of novel N(6)-methyladenine (N6-mA) DNA modifications in human tissues and implicate this epigenetic regulation in human disease, the highly malignant brain cancer, glioblastoma. Glioblastoma upregulates N6-mA levels, which co-localize with heterochromatic histone modifications, namely H3K9me3. N6-mA levels are dynamically regulated by the DNA demethylase, ALKBH1, to transcriptionally silence oncogenic pathways through decreasing chromatin accessibility. Targeting the N6-mA regulator, ALKBH1, in patient-derived human glioblastoma models inhibited tumor cell proliferation and extended survival of tumor-bearing mice, supporting this novel DNA modification as a potential new molecular therapeutic target for glioblastoma. Collectively, our results uncover a novel epigenetic node in cancer through the DNA modification, N6-mA.
Project description:DNA N6-methyladenine (6mA) modifications expand the information capacity of DNA and have long been known to exist in bacterial genomes. Xanthomonas oryzae pv. Oryzicola (Xoc) is the causative agent of bacterial leaf streak, an emerging and destructive disease in rice worldwide. However, the genome-wide distribution patterns and potential functions of 6mA in Xoc are largely unknown. In this study, we analyzed the levels and global distribution patterns of 6mA modification in genomic DNA of seven Xoc strains (BLS256, BLS279, CFBP2286, CFBP7331, CFBP7341, L8 and RS105). The 6mA modification was found to be widely distributed across the seven Xoc genomes, accounting for percent of 3.80, 3.10, 3.70, 4.20, 3.40, 2.10, and 3.10 of the total adenines in BLS256, BLS279, CFBP2286, CFBP7331, CFBP7341, L8, and RS105, respectively. Notably, more than 82% of 6mA sites were located within gene bodies in all seven strains. Two specific motifs for 6?mA modification, ARGT and AVCG, were prevalent in all seven strains. Comparison of putative DNA methylation motifs from the seven strains reveals that Xoc have a specific DNA methylation system. Furthermore, the 6?mA modification of rpfC dramatically decreased during Xoc infection indicates the important role for Xoc adaption to environment.