Agilent data from Arabidopsis thaliana enriched guard cell tissues (GC) treated with high CO2 and darkness
Ontology highlight
ABSTRACT: Genes of the of Arabidopsis thaliana guard cells transcriptome that respond to high CO2 and darkness were identified and compared to the ABA- and low humidity treated samples of Experiment GSE41054 in Arabidopsis thaliana enriched guard cell samples.
Project description:To identify genes of the guard cell transcriptome of Arabidopsis thaliana enriched guard cell samples were compared with total leaf tissue. Genes of the abscisic acid and humidity response of Arabidopsis thaliana guard cells were identified by treatment with ABA-Spray and low humidity.
Project description:To identify genes of the guard cell transkriptome of Arabidopsis thaliana enriched guard cell samples were compared with total leaf tissue. Genes of the abscisic acid and humidity response of Arabidopsis thaliana guard cells were identified by treatment with ABA-Spray and low humidity. Ost1-2 and slac1-3 mutants were compared to their wildtype.
Project description:To identify genes of the guard cell transcriptome of Arabidopsis thaliana enriched guard cell samples were compared with total leaf tissue. Genes of the abscisic acid and humidity response of Arabidopsis thaliana guard cells were identified by treatment with ABA-Spray and low humidity. total samples analysed are 24: 4 biological independent replicates of: total leaf (COL-0) vs. enriched guard cells (COL-0); ABA-sprayed enriched guard cells (gl1-1) vs. control-sprayed enriched guard cells (gl1-1); low humidity (20%rh) treated enriched guard cells (COL-0) vs. high humidity (80%) treated enriched guard cells (COL-0)
Project description:To identify genes of the guard cell transkriptome of Arabidopsis thaliana enriched guard cell samples were compared with total leaf tissue. Genes of the abscisic acid and humidity response of Arabidopsis thaliana guard cells were identified by treatment with ABA-Spray and low humidity. Ost1-2 and slac1-3 mutants were compared to their wildtype. total samples analysed are 35: 4 biolocigal independent replicates of: total leaf (COL-0) vs. enriched guard cells (COL-0); ABA-sprayed enriched guard cells (gl1-1) vs. control-sprayed enriched guard cells (gl1-1); enriched guard cells (slac1-3) vs. enriched guard cells (gl1-1);guard cells (ost1-2) vs. guard cells (ler);low humidity(20%rh) treated enriched guard cells (COL-0) vs. high humidity(80%) treated enriched guard cells (COL0)
Project description:To identify genes of the guard cell transcriptome of Arabidopsis thaliana enriched guard cell samples of ost1-2 and slac1-5 mutants were compared to their wildtype.
Project description:To identify genes of the guard cell transcriptome of Arabidopsis thaliana enriched guard cell samples of ost1-2 and slac1-5 mutants were compared to their wildtype. Total samples analysed are 11: biological independent replicates of: enriched guard cells (slac1-5) vs. enriched guard cells (gl1-1); enriched guard cells (ost1-2) vs. guard cells (ler);
Project description:In plants, epidermal guard cells integrate and respond to numerous environmental signals to control stomatal pore apertures thereby regulating gas exchange. Chromatin structure controls transcription factor access to the genome, but whether large-scale chromatin remodeling occurs in guard cells during stomatal movements, and in response to the hormone abscisic acid (ABA) in general, remain unknown. Here we isolate guard cell nuclei from Arabidopsis thaliana plants to examine whether the physiological signals, ABA and CO2, regulate guard cell chromatin during stomatal movements. Our cell type specific analyses uncover patterns of chromatin accessibility specific to guard cells and define novel cis-regulatory sequences supporting guard cell specific gene expression. We find that ABA triggers extensive and dynamic chromatin remodeling in guard cells, roots, and mesophyll cells with clear patterns of cell-type specificity. DNA motif analyses uncover binding sites for distinct transcription factors enriched in ABA-induced and ABA-repressed chromatin. We identify the ABF/AREB bZIP-type transcription factors that are required for ABA-triggered chromatin opening in guard cells and implicate the inhibition of a set of bHLH-type transcription factors in controlling ABA-repressed chromatin. Moreover, we demonstrate that ABA and CO2 induce distinct programs of chromatin remodeling. We provide insight into the control of guard cell chromatin dynamics and propose that ABA-induced chromatin remodeling primes the genome for abiotic stress resistance.
Project description:In plants, epidermal guard cells integrate and respond to numerous environmental signals to control stomatal pore apertures thereby regulating gas exchange. Chromatin structure controls transcription factor access to the genome, but whether large-scale chromatin remodeling occurs in guard cells during stomatal movements, and in response to the hormone abscisic acid (ABA) in general, remain unknown. Here we isolate guard cell nuclei from Arabidopsis thaliana plants to examine whether the physiological signals, ABA and CO2, regulate guard cell chromatin during stomatal movements. Our cell type specific analyses uncover patterns of chromatin accessibility specific to guard cells and define novel cis-regulatory sequences supporting guard cell specific gene expression. We find that ABA triggers extensive and dynamic chromatin remodeling in guard cells, roots, and mesophyll cells with clear patterns of cell-type specificity. DNA motif analyses uncover binding sites for distinct transcription factors enriched in ABA-induced and ABA-repressed chromatin. We identify the ABF/AREB bZIP-type transcription factors that are required for ABA-triggered chromatin opening in guard cells and implicate the inhibition of a set of bHLH-type transcription factors in controlling ABA-repressed chromatin. Moreover, we demonstrate that ABA and CO2 induce distinct programs of chromatin remodeling. We provide insight into the control of guard cell chromatin dynamics and propose that ABA-induced chromatin remodeling primes the genome for abiotic stress resistance.
Project description:To clarify the molecular mechanism in photoperiod-dependent regulation of stomatal movements, we performed RNA sequences in isolated guard cell protoplasts from Arabidopsis thaliana.