Long non-coding RNA MIR503HG controls endothelial-to-mesenchymal transition
Ontology highlight
ABSTRACT: Endothelial-to-mesenchymal transition (EndMT) is a dynamic transformation process that has a functional impact upon pathological vascular remodelling. The molecular mechanisms that govern EndMT remain largely unknown. By induction of EndMT in human primary endothelial cells (EC), using a combination of transforming growth factor-β2 (TGF-b2) and interleukin-1b (IL-1β), we identified the dramatic loss of the lncRNA MIR503HG, as a common signature across multiple primary EC types. Targeted depletion of MIR503HG spontaneously induced EndMT. Overexpression of MIR503HG repressed EndMT despite TGF-β2 and IL-1β co-stimulation. RNA-seq was carried out to identify the changes in gene expression induced by MIR503HG overexpression. We showed that over 25% of the EndMT-transcriptome signature was inhibited upon MIR503HG overexpression. Crucially, phenotypic changes induced by MIR503HG were independent of the functional regulation of miR-503 and miR-424, both harbored within the MIR503HG locus. Collectively, we identify the lncRNA MIR503HG as an essential regulator of EndMT.
ORGANISM(S): Homo sapiens
PROVIDER: GSE118815 | GEO | 2020/12/31
REPOSITORIES: GEO
ACCESS DATA