Project description:Rationale: Chronic Obstructive Pulmonary Disease (COPD) is associated with a complex pulmonary and systemic immune response. Objective: To characterize and relate the lung tissue and circulating blood network immune response in COPD. Methods: Lung tissue and circulating blood samples were simultaneously obtained from COPD patients (current smokers n=28 and former smokers n=16) and controls (current smokers n=9 and non-smokers n=12) undergoing thoracic surgery. We used flow cytometry to assess the immune cell composition, Affymetrix arrays to determine whole lung mRNA expression, and Weighted Gene Co-expression Network Analysis (WGCNA) to characterize and compare the pulmonary and systemic immune responses in patients and controls. Results: In lung tissue of current smokers with COPD (vs. non-smokers and former smokers with COPD) we observed a significant increase in the proportion of intermediated phenotype macrophages (Mphage) expressing both M1 and M2 markers, whereas that of M1 Mphage (pro-inflammatory) and CD4+ and CD8+ T-lymphocytes were decreased. These changes were not mirrored in circulating blood but WGCNA identified three modules of co-expressed genes that related, respectively to: (1) the total proportion of lung Mphage (extracellular matrix and angiogenesis genes) ; (2) active smoking (T cell and apoptosis related genes); and, (3) severity of airflow limitation (cilium organization genes). Conclusions: In mild/moderate COPD, the main pulmonary immune cell alterations relate to current smoking, involve changes in the proportion of Mphage and T cells and are associated with changes in whole lung tissue transcriptome. These cellular pulmonary changes are not mirrored in the systemic circulation.
Project description:RNA was obtained from histologically normal bronchial epithelium of smokers during time of clinical bronchoscopy from relatively accessible airway tissue. Gene expression data from smokers with lung cancer was compared with samples from smokers without lung cancer. This allowed us to generate a diagnostic gene expression profile that could distinguish the two classes. This profile could provide additional clinical benefit in diagnosing cancer amongst smokers with suspect lung cancer. Keywords: Disease state analysis
Project description:Exosomal miRNAs have been studied in relation to many diseases. However, there is little to no knowledge regarding the miRNA population of BALF or the lung tissue derived exosomes in COPD and IPF. Considering this, we determined and compared the miRNA profiles of BALF and lung tissue-derived exosomes from healthy non-smokers, healthy smokers, and patients with COPD and IPF. NGS results identified three differentially expressed miRNAs in the BALF, while one in the lung-derived exosomes from COPD patients as compared to healthy non-smokers. Of these, we found three- and five-fold downregulation of miR-122-5p amongst the lung tissue-derived exosomes from COPD patients as compared to healthy non-smokers and smokers, respectively. Interestingly, there were key 55 differentially expressed miRNAs in the lung tissue-derived exosomes of IPF patients compared to non-smoking controls.
Project description:Lung tissue of COPD patients and tissue of non-smokers was investigated in transcriptome analysis with regard to differences in RNA expression levels to identify target genes for COPD treatment.
Project description:Tobacco smoking is responsible for over 90% of lung cancer cases, and yet the precise molecular alterations induced by smoking in lung that develop into cancer and impact survival have remained obscure. We performed gene expression analysis using HG-U133A Affymetrix chips on 135 fresh frozen tissue samples of adenocarcinoma and paired noninvolved lung tissue from current, former and never smokers, with biochemically validated smoking information. ANOVA analysis adjusted for potential confounders, multiple testing procedure, Gene Set Enrichment Analysis, and GO-functional classification were conducted for gene selection. Results were confirmed in independent adenocarcinoma and non-tumor tissues from two studies. We identified a gene expression signature characteristic of smoking that includes cell cycle genes, particularly those involved in the mitotic spindle formation (e.g., NEK2, TTK, PRC1). Expression of these genes strongly differentiated both smokers from non-smokers in lung tumors and early stage tumor tissue from non-tumor tissue (p<0.001 and fold-change>1.5, for each comparison), consistent with an important role for this pathway in lung carcinogenesis induced by smoking. These changes persisted many years after smoking cessation. NEK2 (p<0.001) and TTK (p=0.002) expression in the noninvolved lung tissue was also associated with a 3-fold increased risk of mortality from lung adenocarcinoma in smokers. Our work provides insight into the smoking-related mechanisms of lung neoplasia, and shows that the very mitotic genes known to be involved in cancer development are induced by smoking and affect survival. These genes are candidate targets for chemoprevention and treatment of lung cancer in smokers. Keywords: comparative genomics
Project description:Cigarette smoking is the main risk factor for the development of squamous cell lung carcinoma (SCC). However, the smoking-related molecular changes in SCC have not been studied. We wanted to identify genes in both histologically normal bronchial epithelium and SCC samples that are differentially expressed between current and ex-smokers. In addition, to analyze the levels of the smoking-related genes identified in normal bronchial epithelium with the levels in SCC. Gene expression profiles were generated using Agilent whole human genome microarrays in 28 laser microdissected normal bronchus epithelial samples and in 35 laser microdissected SCC samples of current and ex-smokers. Levels of 246 genes, mainly related to oxidative stress response, were significantly different between normal bronchial epithelium of current and ex-smokers. No significant differences were associated with the smoking status in SCC samples. Analysis of the 246 smoking specific genes in SSC from current and ex-smokers also revealed no differences. As a next step, we compared the levels of the smoking-specific gene signature between normal bronchial epithelium from ex- and current smokers to all 34 SCC samples. Twenty-two percent of the upregulated genes are further upregulated in SCC as compared to current smokers. Expression of the downregulated genes was even further downregulated for 79% of the genes in SCC as compared to bronchus epithelium of current smokers. The downregulated genes included several tumour suppressor genes. This study shows that genes upregulated in normal bronchial epithelium of current smokers are expressed at similar levels in SCC samples, while levels of downregulated genes were significantly further reduced in SCC. This indicates that these downregulated genes play a role in SCC oncogenesis.
Project description:Chronic obstructive pulmonary disease (COPD) is a progressive and irreversible chronic inflammatory lung disease. The abnormal inflammatory response of the lung, mainly to cigarette smoke, causes multiple cellular and structural changes affecting all of its compartments, which leads to disease progression. The molecular mechanisms underlying these pathological changes are still not fully understood The aim of this study was to identify genes and molecular pathways potentially involved in the pathogenesis of COPD Peripheral lung tissue samples from moderate COPD patients, smokers and nonsmokers were obtained. All patients were undergoing lung resection for localized carcinomas. RNA was extracted and processed for further hybridization on Affymetrix microarrays