The genetic ancestry of modern Indus Valley populations from Northwest India
Ontology highlight
ABSTRACT: We genotyped 45 new samples from 4 populations of Northwest India and combined it with previously published data to characterize the population structure of modern Northwest Indian populations in the context of their geographic neighbors across South Asia and West Eurasia.
Project description:The Indus Valley has been the backdrop for several historic and prehistoric population movements between South Asia and West Eurasia. However, the genetic structure of present-day populations from Northwest India is poorly characterized. Here we report new genome-wide genotype data for 45 modern individuals from four Northwest Indian populations, including the Ror, whose long-term occupation of the region can be traced back to the early Vedic scriptures. Our results suggest that although the genetic architecture of most Northwest Indian populations fits well on the broader North-South Indian genetic cline, culturally distinct groups such as the Ror stand out by being genetically more akin to populations living west of India; such populations include prehistorical and early historical ancient individuals from the Swat Valley near the Indus Valley. We argue that this affinity is more likely a result of genetic continuity since the Bronze Age migrations from the Steppe Belt than a result of recent admixture. The observed patterns of genetic relationships both with modern and ancient West Eurasians suggest that the Ror can be used as a proxy for a population descended from the Ancestral North Indian (ANI) population. Collectively, our results show that the Indus Valley populations are characterized by considerable genetic heterogeneity that has persisted over thousands of years.
Project description:We genotyped 322 new samples from 38 Eurasian populations and combined it with previously published data to characterize the population structure of Turkic-speaking populations in the context of their geographic neighbors across Eurasia
Project description:We combined new data with previously published data to characterize admixture patterns of Austroasiatic speaking populations of India in the context of their geographic neighbours across Eurasia
Project description:Bites by the Indian spectacled cobra (Naja naja) are widely reported across the Indian subcontinent, with an associated high rate of mortality and morbidity. In western India (WI), the numbers of reported incidents of cobra envenomation are significantly higher than the other snake bites. In this study the venom proteome of WINn was deciphered for the first time using tandem mass spectroscopy analysis.
Project description:We genotyped 322 new samples from 38 Eurasian populations and combined it with previously published data to characterize the population structure of Turkic-speaking populations in the context of their geographic neighbors across Eurasia 322 samples were analysed with the Illumina Human610-Quad, Human660W-Quad, and HumanOmni1-Quad Genotyping BeadChips and are described herein.
Project description:In Asia, oral cancer (OC) and oral submucous fibrosis (OSF) constitute major health problems linked to use of betel quid. This work performed CGH genome-wide analysis of OC (12 from India, 12 from Sri Lanka) and OSF (6 from India) cases with normal controls.
Project description:Russell’s viper (Daboia russelii) (RV), a category I medically important snake as well as a member of the “Big Four”, is responsible for a heavy toll of snake bite mortality and morbidity in Indian sub-continent. Epidemiological studies suggest highest incidence of RV envenomation in eastern India (EI). In this study the RV venom proteomes from Burdwan and Nadia, the two districts of West Bengal, eastern India was deciphered for the first time using tandem mass spectrometry analysis.
Project description:We combined new data with previously published data to characterize the population structure of Corsican population in the context of their geographic neighbors across Eurasia and North Africa.
Project description:The Kashmiri population is an ethno-linguistic group that resides in the Kashmir Valley in northern India. A longstanding hypothesis is that this population derives ancestry from Jewish and/or Greek sources. There is historical and archaeological evidence of ancient Greek presence in India and Kashmir. Further, some historical accounts suggest ancient Hebrew ancestry as well. To date, it has not been determined whether signatures of Greek or Jewish admixture can be detected in the Kashmiri population. Using genome-wide genotyping and admixture detection methods, we determined there are no significant or substantial signs of Greek or Jewish admixture in modern-day Kashmiris. The ancestry of Kashmiri Tibetans was also determined, which showed signs of admixture with populations from northern India and west Eurasia. These results contribute to our understanding of the existing population structure in northern India and its surrounding geographical areas.