Rbfox1 mediates cell-type specific splicing in cortical interneurons
Ontology highlight
ABSTRACT: Cortical interneurons display a remarkable diversity in their morphology, physiological properties and connectivity. Elucidating the molecular determinants underlying this heterogeneity is essential for understanding interneuron development and function. We discovered that alternative splicing differentially regulates the integration of somatostatin- and parvalbumin-expressing interneurons into nascent cortical circuits through the cell-type specific tailoring of mRNAs. Specifically, we identified a role for the activity-dependent splicing regulator Rbfox1 in the development of cortical interneuron subtype specific efferent connectivity. Our work demonstrates that Rbfox1 mediates largely non-overlapping alternative splicing programs within two distinct but related classes of interneurons.
ORGANISM(S): Mus musculus
PROVIDER: GSE119998 | GEO | 2018/10/12
REPOSITORIES: GEO
ACCESS DATA