Isolation and genome-wide characterization of cellular DNA:RNA triplex structures III
Ontology highlight
ABSTRACT: RNA can directly bind to purine-rich DNA via Hoogsteen base pairing, forming a DNA:RNA triple helical structure that anchors the RNA to specific sequences and allows guiding of transcription regulators to distinct genomic loci. To unravel the prevalence of DNA:RNA triplexes in living cells, we have established a fast and cost-effective method that allows genome-wide mapping of DNA:RNA triplex interactions. In contrast to previous approaches applied for the identification of chromatin-associated RNAs, this method uses protein-free nucleic acids isolated from chromatin. High-throughput sequencing and computational analysis of DNA-associated RNA revealed a large set of RNAs which originate from non-coding and coding loci, including repeat elements. Combined analysis of DNA-associated RNA and RNA-associated DNA identified genomic DNA:RNA triplex structures. The results suggest that triplex formation is a general mechanism of RNA-mediated target-site recognition, which has major impact on biological functions.
Project description:RNA can directly bind to purine-rich DNA via Hoogsteen base pairing, forming a DNA:RNA triple helical structure that anchors the RNA to specific sequences and allows guiding of transcription regulators to distinct genomic loci. To unravel the prevalence of DNA:RNA triplexes in living cells, we have established a fast and cost-effective method that allows genome-wide mapping of DNA:RNA triplex interactions. In contrast to previous approaches applied for the identification of chromatin-associated RNAs, this method uses protein-free nucleic acids isolated from chromatin. High-throughput sequencing and computational analysis of DNA-associated RNA revealed a large set of RNAs which originate from non-coding and coding loci, including repeat elements. Combined analysis of DNA-associated RNA and RNA-associated DNA identified genomic DNA:RNA triplex structures. The results suggest that triplex formation is a general mechanism of RNA-mediated target-site recognition, which has major impact on biological functions.
Project description:RNA can directly bind to purine-rich DNA via Hoogsteen base pairing, forming a DNA:RNA triple helical structure that anchors the RNA to specific sequences and allows guiding of transcription regulators to distinct genomic loci. To unravel the prevalence of DNA:RNA triplexes in living cells, we have established a fast and cost-effective method that allows genome-wide mapping of DNA:RNA triplex interactions. In contrast to previous approaches applied for the identification of chromatin-associated RNAs, this method uses protein-free nucleic acids isolated from chromatin. High-throughput sequencing and computational analysis of DNA-associated RNA revealed a large set of RNAs which originate from non-coding and coding loci, including repeat elements. Combined analysis of DNA-associated RNA and RNA-associated DNA identified genomic DNA:RNA triplex structures. The results suggest that triplex formation is a general mechanism of RNA-mediated target-site recognition, which has major impact on biological functions.
Project description:RNA can directly bind to purine-rich DNA via Hoogsteen base pairing, forming a DNA:RNA triple helical structure that anchors the RNA to specific sequences and allows guiding of transcription regulators to distinct genomic loci. To unravel the prevalence of DNA:RNA triplexes in living cells, we have established a fast and cost-effective method that allows genome-wide mapping of DNA:RNA triplex interactions. In contrast to previous approaches applied for the identification of chromatin-associated RNAs, this method uses protein-free nucleic acids isolated from chromatin. High-throughput sequencing and computational analysis of DNA-associated RNA revealed a large set of RNAs which originate from non-coding and coding loci, including repeat elements. Combined analysis of DNA-associated RNA and RNA-associated DNA identified genomic DNA:RNA triplex structures. The results suggest that triplex formation is a general mechanism of RNA-mediated target-site recognition, which has major impact on biological functions.
Project description:Schmitz2014 - RNA triplex formation
The model is parameterized using the
parameters for gene CCDC3 from Supplementary Table S1. The two
miRNAs which form the triplex together with CCDC3 are miR-551b and
miR-138.
This model is described in the article:
Cooperative gene regulation
by microRNA pairs and their identification using a
computational workflow.
Schmitz U, Lai X, Winter F,
Wolkenhauer O, Vera J, Gupta SK.
Nucleic Acids Res. 2014 Jul; 42(12):
7539-7552
Abstract:
MicroRNAs (miRNAs) are an integral part of gene regulation
at the post-transcriptional level. Recently, it has been shown
that pairs of miRNAs can repress the translation of a target
mRNA in a cooperative manner, which leads to an enhanced
effectiveness and specificity in target repression. However, it
remains unclear which miRNA pairs can synergize and which genes
are target of cooperative miRNA regulation. In this paper, we
present a computational workflow for the prediction and
analysis of cooperating miRNAs and their mutual target genes,
which we refer to as RNA triplexes. The workflow integrates
methods of miRNA target prediction; triplex structure analysis;
molecular dynamics simulations and mathematical modeling for a
reliable prediction of functional RNA triplexes and target
repression efficiency. In a case study we analyzed the human
genome and identified several thousand targets of cooperative
gene regulation. Our results suggest that miRNA cooperativity
is a frequent mechanism for an enhanced target repression by
pairs of miRNAs facilitating distinctive and fine-tuned target
gene expression patterns. Human RNA triplexes predicted and
characterized in this study are organized in a web resource at
www.sbi.uni-rostock.de/triplexrna/.
This model is hosted on
BioModels Database
and identified by:
BIOMD0000000530.
To cite BioModels Database, please use:
BioModels Database:
An enhanced, curated and annotated resource for published
quantitative kinetic models.
To the extent possible under law, all copyright and related or
neighbouring rights to this encoded model have been dedicated to
the public domain worldwide. Please refer to
CC0
Public Domain Dedication for more information.
Project description:The molecular mechanism for ssRNA+dsDNA triple helix structure formation on chromatin are unclear. We analyzed the triplex-nucleosomes complex fomration in vitro and in vivo, and show that triplexes are stabilized by the nucleosomes. We developed a method to monitor nucleosome bound RNA triplexes in vivo, revealing that RNA binding maintained the nucleosomes on an accessible structure supporting a gene activating role of nucleosome-triplex complexes in cells.
Project description:Triple helix is a potential mechanism how lncRNAs interact with the genome. Our in silico method (Triplex Domain Finder) is able to predict the binding sites of lncRNA MEG3 and GATA6-AS in the genome. In order to validate these predictions, we develop DBD-Capture-Seq to capture the DNA loci where the given RNA oligo binds to via triplex. Method: Different RNA oligos are used The biotinylated RNA oligos (MEG3 TFR1, MEG3 TFR2, and GATA6-AS TFR1) were incubated with sheared genomic DNA to allow for triplex formation. After binding to streptavidin-coated beads, RNA-associated DNA was eluted and subjected to deep sequencing. Control experiments were conducted in the absence of biotinylated RNA oligos.
Project description:Triplex DNA structures, formed by a third DNA strand wrapped around the major groove of double helix, are key molecular regulators and genomic threats that are pharmacologically exploitable. However, the regulatory network governing triplex DNA dynamics are poorly understood. Here we performed chemoproteomic profiling of triplex DNA interactome in live cells to address this knowledge gap. We developed and validated a chemical probe that exhibits exceptional specificity for recognizing triplex DNA structures. By employing a co-binding-mediated proximity capture strategy, we enriched triplex DNA interactome for quantitative proteomics analysis. This enabled the identification of a comprehensive list of triplex DNA interacting proteins, characterized by diverse binding properties and regulatory mechanisms in native chromatin context. As a demonstration, we further validated DDX3X as the first ATP-independent helicase capable of resolving triplex DNA structures with 5' overhangs on the third DNA strand to prevent triplex-DNA-induced DNA damages. Overall, our triplex DNA interactome offers a valuable resource for investigating the biology of triplex DNA in both health and disease.
Project description:The three-stranded DNA-RNA triplex hybridization is involved in various biological processes, including gene expression regulation, DNA repair, and chromosomal stability. However, the DNA-RNA triplex mediating mechanisms underlying tumorigenesis remain to be fully elucidated. In gastric cancer, we performed ChIRP-MS in order to further capture the trimer-forming lncRNA binding protein.