HCV tumor promoting effect is dependent on host genetic background
Ontology highlight
ABSTRACT: The hepatitis C virus (HCV) is one of the major risk factors for the development of hepatocellular carcinoma (HCC). Nevertheless, transgenic mice which express the whole HCV polyprotein (HCV-Tg) do not develop HCC. Whereas chronic HCV infection causes inflammation in patients, in HCV-Tg mice, the host immune reaction against viral proteins is lacking. We aimed to test the role of HCV proteins in HCC development on the background of chronic inflammation in vivo. We crossed the HCV-Tg mice which do not produce HCC with the Mdr2-knockout (Mdr2-KO) mice which develop inflammation-associated HCC, to generate Mdr2-KO/HCV-Tg mice. We studied the effect of the HCV transgene on tumor incidence, hepatocyte mitosis and apoptosis, and on gene expression in the liver of produced mice. This SuperSeries is composed of the SubSeries listed below.
Project description:The hepatitis C virus (HCV) is one of the major risk factors for the development of hepatocellular carcinoma (HCC). Nevertheless, transgenic mice which express the whole HCV polyprotein (HCV-Tg) do not develop HCC. Whereas chronic HCV infection causes inflammation in patients, in HCV-Tg mice, the host immune reaction against viral proteins is lacking. We aimed to test the role of HCV proteins in HCC development on the background of chronic inflammation in vivo. We crossed the HCV-Tg mice which do not produce HCC with the Mdr2-knockout (Mdr2-KO) mice which develop inflammation-associated HCC, to generate Mdr2-KO/HCV-Tg mice. We studied the effect of the HCV transgene on tumor incidence, hepatocyte mitosis and apoptosis, and on gene expression in the liver of produced mice.
Project description:The hepatitis C virus (HCV) is one of the major risk factors for the development of hepatocellular carcinoma (HCC). Nevertheless, transgenic mice which express the whole HCV polyprotein (HCV-Tg) do not develop HCC. Whereas chronic HCV infection causes inflammation in patients, in HCV-Tg mice, the host immune reaction against viral proteins is lacking. We aimed to test the role of HCV proteins in HCC development on the background of chronic inflammation in vivo. We crossed the HCV-Tg mice which do not produce HCC with the Mdr2-knockout (Mdr2-KO) mice which develop inflammation-associated HCC, to generate Mdr2-KO/HCV-Tg mice. We studied the effect of the HCV transgene on tumor incidence, hepatocyte mitosis and apoptosis, and on gene expression in the liver of produced mice.
Project description:Chronic inflammation is a common underlying condition associated with tumor development, accounting for approximately 20% of human cancers. This association is especially apparent in Hepatocellular carcinoma (HCC), which often develops on the background of chronic hepatitis and hepatic fibrosis, slowly unfolding on a background of chronic inflammation. HCC is one of the most common tumors worldwide, exhibiting a very poor prognosis and high mortality rate with limited available therapeutic tools. The etiology of liver cancer is well known, however there is still a lack of precise knowledge about pathogenesis of HCC. IL-6 have been shown to be of importance for liver protection and prevention of liver injury in animal models of acute sclerosing cholangitis and correlate with increased HCC in human patients. Using a murine model of chronic cholangitis based on the ablation of the Mdr2 gene, this study has examined the role of IL-6 signaling in chronic hepatitis and in the subsequent development of liver cancer. The main observations of this study are that IL-6 signaling in male Mdr2-KO mice protects from the development of liver injury and fibrosis, but simultaneously promotes tumor initiation. Thus, IL-6 deficiency in male Mdr2-KO mice dissociates the tight correlation between liver fibrosis and the development of inflammation-associated HCC. To reveal the affected molecular pathways that lead to increased cholestasis and bile acid–induced liver injury, but reduced tumorigenesis in the male IL-6 deficient Mdr2-KO/IL6-KO mice, we performed gene array analysis and identified distinct classes of differentially-expressed genes in these mice. We performed genome-scale gene expression profiling by Affymetrix analysis on tumor-free livers samples from Mdr2-KO, Mdr2-KO/IL6-KO, and wild type C57BL/6 mice at the age of 14 months.
Project description:Chronic liver inflammation precedes the majority of hepatocellular carcinomas (HCC). Here, we explore the connection between chronic inflammation and DNA methylation in the liver at the late precancerous stages of HCC development in Mdr2/Abcb4-knockout (Mdr2-KO) mice, a model of inflammation-mediated HCC. Using methylated DNA immunoprecipitation (MeDIP) followed by hybridization with Agilent CpG Islands (CGIs) microarrays we found specific CGIs in 76 genes which were hypermethylated in the Mdr2-KO liver compared to age-matched controls. Methylation of thirty among these genes was highly specific to the studied HCC model. We revealed that in most tested cases, the observed hypermethylation resulted from an age-dependent decrease of methylation of the specific CGIs in control livers with no decrease in mutant mice. Chronic inflammation did not change global levels of DNA methylation in Mdr2-KO liver, but caused a 2-fold decrease of the global 5-hydroxymethylcytosine level in mutants compared to controls. This decrease could result from a less efficient age-dependent demethylation of specific CpG sites in the liver of Mdr2-KO mutants, as described above. Expression of some tested hypermethylated genes was increased in Mdr2-KO livers compared to controls (28%), others were either similarly expressed (44%), or not expressed in the liver (28%). Liver cell fractionation revealed, that the relative hypermethylation of specific CGIs in Mdr2-KO compared to control livers affected either hepatocyte, or non-hepatocyte, or both fractions. There was only episodic correlation between changes of gene methylation and expression in cell fractions. Conclusion: Chronic liver inflammation causes hypermethylation of specific CGIs, which may affect both hepatocytes and non-hepatocyte liver cells. These changes may serve as markers of an increased regenerative activity and of a precancerous microenvironment in the chronically inflamed liver. Two-condition experiment, Mdr2-KO vs Mdr2-/+ liver tissue from 12m-old male FVB strain mice. Biological replicates: 3 control replicates, 3 knockout replicates.
Project description:Chronic inflammation is a common underlying condition associated with tumor development, accounting for approximately 20% of human cancers. This association is especially apparent in Hepatocellular carcinoma (HCC), which often develops on the background of chronic hepatitis and hepatic fibrosis, slowly unfolding on a background of chronic inflammation. HCC is one of the most common tumors worldwide, exhibiting a very poor prognosis and high mortality rate with limited available therapeutic tools. The etiology of liver cancer is well known, however there is still a lack of precise knowledge about pathogenesis of HCC. IL-6 have been shown to be of importance for liver protection and prevention of liver injury in animal models of acute sclerosing cholangitis and correlate with increased HCC in human patients. Using a murine model of chronic cholangitis based on the ablation of the Mdr2 gene, this study has examined the role of IL-6 signaling in chronic hepatitis and in the subsequent development of liver cancer. The main observations of this study are that IL-6 signaling in female Mdr2-KO mice protects from the development of liver injury and fibrosis, but simultaneously reduced tumor initiation. To reveal the affected molecular pathways that lead to increased cholestasis and bile acid ?induced liver injury, and increased tumorigenesis in the female IL-6 deficient Mdr2-KO/IL6-KO mice, we performed gene array analysis and identified distinct classes of differentially-expressed genes in these mice. We performed genome-scale gene expression profiling by Affymetrix analysis on tumor-free livers samples from Mdr2-KO, Mdr2-KO/IL6-KO, and wild type C57BL/6 mice at the age of 14 months.
Project description:We studied the molecular mechanisms of hepatocellular carcinoma (HCC) initiation and promotion using the Mdr2-knockout (Mdr2-KO) mice at pre-cancerous stages of liver disease. These mice lack the liver-specific P-glycoprotein responsible for phosphatidylcholine transport across the canalicular membrane. Portal inflammation ensues at an early age followed by the development of HCC between the ages of 12 and 15 months. Liver tissue samples of Mdr2-KO and control Mdr2-heterozygotes mice aged 3 and 12 months, were subjected to histological, biochemical and gene expression profiling analysis using Affymetrix Mouse Genome Array. Keywords: HCC, murine model, precancerous stages, chronic liver desease
Project description:Chronic liver inflammation precedes the majority of hepatocellular carcinomas (HCC). Here, we explore the connection between chronic inflammation and DNA methylation in the liver at the late precancerous stages of HCC development in Mdr2/Abcb4-knockout (Mdr2-KO) mice, a model of inflammation-mediated HCC. Using methylated DNA immunoprecipitation (MeDIP) followed by hybridization with Agilent CpG Islands (CGIs) microarrays we found specific CGIs in 76 genes which were hypermethylated in the Mdr2-KO liver compared to age-matched controls. Methylation of thirty among these genes was highly specific to the studied HCC model. We revealed that in most tested cases, the observed hypermethylation resulted from an age-dependent decrease of methylation of the specific CGIs in control livers with no decrease in mutant mice. Chronic inflammation did not change global levels of DNA methylation in Mdr2-KO liver, but caused a 2-fold decrease of the global 5-hydroxymethylcytosine level in mutants compared to controls. This decrease could result from a less efficient age-dependent demethylation of specific CpG sites in the liver of Mdr2-KO mutants, as described above. Expression of some tested hypermethylated genes was increased in Mdr2-KO livers compared to controls (28%), others were either similarly expressed (44%), or not expressed in the liver (28%). Liver cell fractionation revealed, that the relative hypermethylation of specific CGIs in Mdr2-KO compared to control livers affected either hepatocyte, or non-hepatocyte, or both fractions. There was only episodic correlation between changes of gene methylation and expression in cell fractions. Conclusion: Chronic liver inflammation causes hypermethylation of specific CGIs, which may affect both hepatocytes and non-hepatocyte liver cells. These changes may serve as markers of an increased regenerative activity and of a precancerous microenvironment in the chronically inflamed liver.
Project description:Chronic inflammation is a common underlying condition associated with tumor development, accounting for approximately 20% of human cancers. This association is especially apparent in Hepatocellular carcinoma (HCC), which often develops on the background of chronic hepatitis and hepatic fibrosis, slowly unfolding on a background of chronic inflammation. HCC is one of the most common tumors worldwide, exhibiting a very poor prognosis and high mortality rate with limited available therapeutic tools. The etiology of liver cancer is well known, however there is still a lack of precise knowledge about pathogenesis of HCC. IL-6 have been shown to be of importance for liver protection and prevention of liver injury in animal models of acute sclerosing cholangitis and correlate with increased HCC in human patients. Using a murine model of chronic cholangitis based on the ablation of the Mdr2 gene, this study has examined the role of IL-6 signaling in chronic hepatitis and in the subsequent development of liver cancer. The main observations of this study are that IL-6 signaling in male Mdr2-KO mice protects from the development of liver injury and fibrosis, but simultaneously promotes tumor initiation. Thus, IL-6 deficiency in male Mdr2-KO mice dissociates the tight correlation between liver fibrosis and the development of inflammation-associated HCC. To reveal the affected molecular pathways that lead to increased cholestasis and bile acid–induced liver injury, but reduced tumorigenesis in the male IL-6 deficient Mdr2-KO/IL6-KO mice, we performed gene array analysis and identified distinct classes of differentially-expressed genes in these mice.
Project description:We studied the molecular mechanisms of hepatocellular carcinoma (HCC) initiation and promotion using the Mdr2-knockout (Mdr2-KO) mice at pre-cancerous stages of liver disease. These mice lack the liver-specific P-glycoprotein responsible for phosphatidylcholine transport across the canalicular membrane. Portal inflammation ensues at an early age followed by the development of HCC between the ages of 12 and 15 months. Liver tissue samples of Mdr2-KO and control Mdr2-heterozygotes mice aged 3 and 12 months, were subjected to histological, biochemical and gene expression profiling analysis using Affymetrix Mouse Genome Array. The RNA samples from Mdr2-KO and control heterozygous mice aged 3 and 12M (3 males in each experimental group) were subjected to genome scale gene expression profiling with Affymetrix Mouse Array. The gene expression values were extracted with the help of MAS 5.0 software, and analyzed by cluster analysis, and by fold change filtering
Project description:Chronic inflammation is a common underlying condition associated with tumor development, accounting for approximately 20% of human cancers. This association is especially apparent in Hepatocellular carcinoma (HCC), which often develops on the background of chronic hepatitis and hepatic fibrosis, slowly unfolding on a background of chronic inflammation. HCC is one of the most common tumors worldwide, exhibiting a very poor prognosis and high mortality rate with limited available therapeutic tools. The etiology of liver cancer is well known, however there is still a lack of precise knowledge about pathogenesis of HCC. IL-6 have been shown to be of importance for liver protection and prevention of liver injury in animal models of acute sclerosing cholangitis and correlate with increased HCC in human patients. Using a murine model of chronic cholangitis based on the ablation of the Mdr2 gene, this study has examined the role of IL-6 signaling in chronic hepatitis and in the subsequent development of liver cancer. The main observations of this study are that IL-6 signaling in female Mdr2-KO mice protects from the development of liver injury and fibrosis, but simultaneously rduced tumor initiation. To reveal the affected molecular pathways that lead to increased cholestasis and bile acid–induced liver injury, and increased tumorigenesis in the female IL-6 deficient Mdr2-KO/IL6-KO mice, we performed gene array analysis and identified distinct classes of differentially-expressed genes in these mice.