Inducible expression of PrPC in mouse skeletal muscles results in myopathy characterized by changes in gene expression
Ontology highlight
ABSTRACT: Over-expression of wild type PrP in skeletal muscles is sufficient to cause a primary myopathy with no signs of peripheral neuropathy, possibly due to accumulation of a cytotoxic truncated form of PrP and/or PrP aggregation. In this study we used DNA microarrays to identify 1499 transcripts that are temporally deregulated concomitant with inducible PrPC over-expression in the skeletal muscles of transgenic mice. Examination using microarrays revealed a transcriptional profile with both similarities and differences to previously investigated models of myopathies. Down-regulation of genes coding for the myofibrillar proteins MYH2, MYH6, MYH7, MYL2, MYL3 and up-regulation of lysosomal genes CTSS, CTSD, CTSZ, DPEP2, HEXA, HEXB and LAMP1 coincide with the observed myopathy and lysosome accumulation on over-expression of PrPC. Down-regulation of the MEF2C gene, a key regulatory transcriptional factor muscle development and remodeling of adult muscles in response to physiologic and pathologic signals, may contribute to the centrally placed nuclei in the skeletal muscles. Significantly, up-regulation of genes involved in p53 signaling and the induction of p53 protein, suggest a central role for this molecule in the myopathy. Several p53-regulated genes involved in cell cycle arrest (CDNK1A, GADD45a and GADD45b) and apoptosis (BAK1, PMAIP1, BBC3, and BAX) are induced. We suggest that PrPC over-expression in skeletal muscles, possibly in response to accumulation of a cytotoxic truncated form of PrP, causes a primary myopathy involving the induction of p53-dependent pathways.
ORGANISM(S): Mus musculus
PROVIDER: GSE12576 | GEO | 2008/08/27
SECONDARY ACCESSION(S): PRJNA112625
REPOSITORIES: GEO
ACCESS DATA