Project description:We report the application of bulk RNAseq of live cells from pancreas of KPC or KPC-OG genetic mice at 6 weeks of age. These sponteneous tumors were unperturbed otherwise until timepoint.
Project description:This study used Illumina strand-specific, paired-end RNA-sequencing to examine gene expression differences between matched murine tumor- and metastasis-derived mouse pancreatic ductal adenocarcinoma (PDAC) cells grown as three-dimensional, organoid cultures. The study analyzed 16 organoid lines derived from matched primary PDAC tumors and PDAC metastases from 6 KPC (KrasLSL-G12D; Trp53LSL-R172H; Pdx1-Cre) mice.
Project description:This study used 10X Genomics, single-cell RNA-sequencing to examine the differentiation states of cancer cells present in tumors derived from the KrasLSL-G12D; Trp53LSL-R172H; Pdx1-Cre (KPC) mouse model of pancreatic ductal adenocarcinoma. The study analyzed tumors from 8 different mice.
Project description:Pancreatic ductal adenocarcinoma (PDA) is characterized by abundant desmoplasia and poor tissue perfusion. These features are proposed to limit access of therapies to neoplastic cells and blunt treatment efficacy. Indeed, several agents that target the PDA microenvironment promote chemotherapy delivery and improve anti-neoplastic responses in murine models of PDA. Here, we employed the FG-3019 monoclonal antibody directed against the pleiotropic matricellular signaling molecule connective tissue growth factor (CTGF/CCN2). FG-3019 treatment increased PDA cell killing and led to a dramatic tumor response without altering gemcitabine delivery. Microarray expression profiling revealed the down-regulation by FG-3019 of several anti-apoptotic transcripts, including the master regulator Xiap, down-regulation of which has been shown to sensitize PDA to gemcitabine. Decreases in XIAP protein by FG-3019 in the presence and absence of gemcitabine were confirmed by immunoblot, while increases in XIAP protein were seen in PDA cell lines treated with recombinant CTGF. Therefore, alterations in survival cues following targeting of tumor microenvironmental factors may play an important role in treatment responses in animal models and, by extension, PDA patients. Total RNA was isolated from KPC mouse PDA tumors 9 days after initiation of treatment with IgG (n=7 biological replicates), FG-3019 (n=5), IgG + gemcitabine (n=6), or FG-3019 + gemcitabine (n=6) and hybridized to Affymetrix 430A 2.0 microarrays. CEL files were processed by GC-RMA and rescaled using median per-gene normalization in GeneSpring GX 7.3.1.
Project description:This study used 10X Genomics, single-cell RNA-sequencing to examine the cell types present in the KrasLSL-G12D; Trp53LSL-R172H; Pdx1-Cre (KPC) mouse model for pancreatic ductal adenocarcinoma. The study analyzed tumors from 4 different mice. For each tumor, we performed flow sorting to isolate all viable cells, and to isolate a fibroblast-enriched population of cells for single-cell RNA-seq to determine the transcriptomes of individual cells in KPC pancreatic ductal adenocarcinoma tumors.
Project description:Tumor growth outstrips local nutrient supply, making metabolic reprogramming a necessary component of oncogenesis and cancer progression. The supply of lipids such as cholesterol and fatty acids is required for continued tumor cell division. Sterol regulatory element-binding protein (SREBP) transcription factors control cellular lipid homeostasis by activating genes required for cholesterol and fatty acid synthesis and uptake. SREBPs have been implicated in the progression of multiple cancers, including glioblastoma, breast, colon, liver and prostate. However, the role the SREBP pathway and its central regulator SREBP cleavage activating protein (SCAP) in pancreatic ductal adenocarcinoma (PDAC) has not been studied in detail. Here, we demonstrate that SREBP target genes are upregulated in PDAC tumors, and SREBPs are upregulated in patient-derived PDAC cell lines under low serum conditions that mimic the tumor microenvironment. Chemical or genetic inhibition of the SREBP pathway prevented PDAC cell growth under low serum conditions due to a lack of lipid supply. Using subcutaneous and orthotopic xenograft models, we showed that SCAP is required for PDAC tumor growth. Pancreas-specific knockout of Scap had no effect on mouse pancreas development or function, allowing examination of the role for Scap in the murine KPC model of PDAC. Notably, heterozygous loss of Scap significantly prolonged survival in KPC mice, and homozygous loss of Scap impaired PDAC tumor inception. Collectively, these results demonstrate that SCAP and SREBP pathway activity are essential for PDAC cell and tumor growth in vitro and in vivo, identifying SCAP as a potential therapeutic target for PDAC.
Project description:Pancreatic cancer is an aggressive malignancy, often diagnosed at metastatic stages. Several studies have implicated systemic factors, such as extracellular vesicle release and myeloid cell expansion, in the establishment of pre-metastatic niches in cancer. The Rab27a GTPase is overexpressed in advanced cancers, can regulate vesicle trafficking, and has been previously linked to non-cell autonomous control of tumor growth and metastasis, however, the role of Rab27a itself in the metastatic propensity of pancreatic cancer is not well understood. Here, we have established a model to study how Rab27a directs formation of the pre-metastatic niche. Loss of Rab27a in pancreatic cancer cells did not decrease tumor growth in vivo, but resulted in altered systemic myeloid cell expansion, both in the primary tumors and at the distant organ sites. In metastasis assays, loss of Rab27a expression in tumor cells injected into circulation compromised efficient outgrowth of metastatic lesions. However, Rab27a knockdown cells had an unexpected advantage at initial steps of metastatic seeding, suggesting that Rab27a may alter cell-autonomous invasive properties of the tumor cells. Gene expression analysis of gene expression revealed that downregulation of Rab27a increased expression of genes involved in epithelial-to-mesenchymal transition pathways, consistent with our findings that primary tumors arising from Rab27a knockdown cells were more invasive. Overall, these data reveal that Rab27a can play divergent roles in regulating pro-metastatic propensity of pancreatic cancer cells: by generating pro-metastatic environment at the distant organ sites, and by suppressing invasive properties of the cancer cells.