Differentially regulated genes in HtrA2 knockout MEFs upon rotenone treatment
Ontology highlight
ABSTRACT: Cellular stress responses can be activated following functional defects in organelles such as mitochondria and the endoplasmic reticulum. Mitochondrial dysfunction caused by loss of the serine protease HtrA2 leads to a progressive movement disorder in mice and has been linked to parkinsonian neurodegeneration in humans. Here we demonstrate that loss of HtrA2 results in transcriptional up-regulation of nuclear genes characteristic of the integrated stress response, including the transcription factor CHOP, selectively in the brain. We also show that loss of HtrA2 results in the accumulation of unfolded proteins in the mitochondria, defective mitochondrial respiration and enhanced production of reactive oxygen species that contribute to the induction of CHOP expression and to neuronal cell death. CHOP expression is also significantly increased in Parkinson’s disease patients’ brain tissue. We therefore propose that this brain-specific transcriptional response to stress may be important in the advance of neurodegenerative diseases. Keywords: stress response to rotenone treatment
ORGANISM(S): Mus musculus
PROVIDER: GSE13034 | GEO | 2008/12/01
SECONDARY ACCESSION(S): PRJNA114089
REPOSITORIES: GEO
ACCESS DATA