Simultaneous profiling of 3D genome structure and DNA methylation in single human cells
Ontology highlight
ABSTRACT: Dynamic 3D chromatin conformation is a critical mechanism for gene regulation during development and disease. Despite this, profiling of 3D genome structure from complex tissues with cell-type specific resolution remains challenging. Recent efforts have demonstrated that cell-type specific epigenomic features can be resolved in complex tissues using single-cell assays. However, it remains unclear whether single-cell Chromatin Conformation Capture (3C) or Hi-C profiles can effectively identify cell types and reconstruct cell-type specific chromatin conformation maps. To address these challenges, we have developed single-nucleus methyl-3C sequencing (sn-m3C-seq) to capture chromatin organization and DNA methylation information and robustly separate heterogeneous cell types. Applying this method to >4,200 single human brain prefrontal cortex cells, we reconstruct cell-type specific chromatin conformation maps from 14 cortical cell types. These datasets reveal the genome-wide association between cell-type specific chromatin conformation and differential DNA methylation, suggesting pervasive interactions between epigenetic processes regulating gene expression.
ORGANISM(S): Homo sapiens
PROVIDER: GSE130711 | GEO | 2019/09/09
REPOSITORIES: GEO
ACCESS DATA