KLF4 binding during reprogramming is linked to enhancer rewiring and is critical for the architecture and regulation of enhancer hubs [4C-Seq]
Ontology highlight
ABSTRACT: Purpose: We captured on a genome-wide scale the binding of KLF4 during iPSC formation and its effects on chromatin state, transcriptional activity and chromatin topology around its targets. Methods: We used a well-characterized reprogramming system to apply genome-wide assays that map KLF4 binding (ChIP-seq), chromatin accessibility (ATAC-seq), enhancer and gene activity (H3K27ac ChIP-seq and RNA-seq), enhancer connectivity (H3K27ac Hi-ChIP) as well as KLF4-centric chromatin looping (KLF4 Hi-ChIP) at different stages during acquisition of pluripotency. Results: Integrative analysis of our results generated a reference map of stage-specific chromatin changes around KLF4 bound loci and established strong links with enhancer. rewiring and concordant transcriptional changes. Genetic manipulation of KLF4 binding from a PSC enhancer further supported the ability of KLF4 to function both as a transcriptional regulator and a chromatin organizer. Conclusions: Our study offers novel insights into the intricate roles of a master regulator during cell fate transition.
ORGANISM(S): Mus musculus
PROVIDER: GSE135124 | GEO | 2019/09/06
REPOSITORIES: GEO
ACCESS DATA