Project description:Here we used artificial selection to assimilate a seasonal wing color phenotype from a naturally plastic population of butterflies. Using SNP association and RNAseq we mapped three genes responsible for wing color fixation, including the color pattern supergene cortex. Combined with endocrine and chromatin accessibility assays, we found that the rapid transition of wing coloration from an environmentally determined trait to a fixed, genetic trait occurred through selection on cis-regulatory alleles of genes with wing-specific functions, not by changes in environmental detection or hormone signaling.
Project description:Here we used artificial selection to assimilate a seasonal wing color phenotype from a naturally plastic population of butterflies. Using SNP association and RNAseq we mapped three genes responsible for wing color fixation, including the color pattern supergene cortex. Combined with endocrine and chromatin accessibility assays, we found that the rapid transition of wing coloration from an environmentally determined trait to a fixed, genetic trait occurred through selection on cis-regulatory alleles of genes with wing-specific functions, not by changes in environmental detection or hormone signaling.
Project description:Here we used artificial selection to assimilate a seasonal wing color phenotype from a naturally plastic population of butterflies. Using SNP association and RNAseq we mapped three genes responsible for wing color fixation, including the color pattern supergene cortex. Combined with endocrine and chromatin accessibility assays, we found that the rapid transition of wing coloration from an environmentally determined trait to a fixed, genetic trait occurred through selection on cis-regulatory alleles of genes with wing-specific functions, not by changes in environmental detection or hormone signaling.