Sphingosine kinase 2 in stromal fibroblasts creates a hospitable tumor microenvironment in breast cancer
Ontology highlight
ABSTRACT: Reciprocal interactions between breast cancer cells and the tumor microenvironment are important for cancer progression and metastasis. We report here that the deletion or inhibition of sphingosine kinase 2 (SphK2), which produces sphingosine-1-phosphate (S1P), markedly suppresses syngeneic breast tumor growth and lung metastasis in mice by creating a hostile microenvironment for tumor growth and invasion. SphK2 deficiency decreased S1P and concomitantly increased ceramides, including C16-ceramide, in stromal fibroblasts. Ceramide accumulation suppressed activation of cancer-associated fibroblasts (CAFs) by upregulating stromal p53, which restrained production of tumor-promoting factors to reprogram the tumor microenvironment and restrict breast cancer establishment. Ablation of p53 in SphK2-deficient fibroblasts reversed these effects, enabled CAF activation and promoted tumor growth and invasion. These data uncovered a novel role of SphK2 in regulating non-cell autonomous functions of p53 in stromal fibroblasts and their transition to tumor-promoting CAFs, paving the way for the development of a strategy to target the tumor microenvironment and enhance therapeutic efficacy.
ORGANISM(S): Mus musculus
PROVIDER: GSE136655 | GEO | 2020/01/01
REPOSITORIES: GEO
ACCESS DATA