TET1 is a tumour suppressor that inhibits bladder cancer progression
Ontology highlight
ABSTRACT: Ten-Eleven Translocation 1 (TET1) is a member of methylcytosine dioxygenase, which catalyse 5-methylcytosine (5-mC) to 5-hydroxymethylcytosine (5-hmC) that promote the demethylation process. The diminished expression of TET1 protein and 5-hmC in many tumors indicate a critical role for the maintenance of cell stability. However, role of TET1 in bladder cancer development remains unclear. Here we found that TET1 expression was downregulated in bladder cancer tissues compared with normal urothelium and was inversely related to patient overall survival. TET1 silencing in bladder cancer cells increase proliferation and inhibited cell migration and invasion while its re-expression inhibits their proliferation and the growth of tumor xenografts. Furthermore, we found that TET1 binds to the promoter of the TSG to maintain its hypomethylated which interacts with β-catenin and suppress its nuclear translocation, thus inhibiting β-catenin transcriptional activity and downstream genes. In conclusion, TET1 acts as a tumor suppressor gene in bladder cancer cells by suppressing β-catenin signaling. This study may facilitate efforts to therapeutic strategy for patients with bladder cancer.
Project description:Ten eleven translocation (TET) enzymes catalyse the oxidative reactions of 5-methylcytosine (5mC) to promote the demethylation process. The reaction intermediate 5-hydroxymethylcytosine (5hmC) has been shown to be abundant in embryonic stem cells and tissues, but strongly depleted in human cancers. Genetic mutations of TET2 gene were associated with lleukemia, whereas TET1 downregulation has been shown to promote malignancy in breast cancer. Here, we report that TET1 is downregulated in colon tumours from the initial stage. TET1 silencing in primary epithelial colon cells increase their cellular proliferation while its re-expression in colon cancer cells inhibits their proliferation and the growth of tumour xenografts even at later stages. We found that TET1 binds and maintains hypomethylated the promoter of the DKK genes inhibitors of the WNT signalling to promote their expression. Downregulation of TET1 during colon cancer initiation leads to repression, by DNA methylation the promoters of the inhibitors of the WNT pathway resulting in a constitutive activation of the WNT pathway. Thus the DNA hydroxymethylation mediated by TET1 controlling the WNT signalling is a key player of tumour growth. These results provide new insights for understanding how tumours escape cellular controls
Project description:Ten-eleven translocation methylcytosine dioxygenase-1, TET1, takes part in active DNA demethylation. This study showed that TET1 expression reprogramed ovarian cancer epigenome and correlated with poor survival in advanced-stage epithelial ovarian carcinoma (EOC).
Project description:DNA methylation is a heritable epigenetic modification involved in gene silencing, imprinting, and the suppression of retrotransposons. Global DNA demethylation occurs in the early embryo and the germline and may be mediated by Tet (ten-eleven-translocation) enzymes, which convert 5-methylcytosine (mC) to 5-hydroxymethylcytosine (hmC). Tet enzymes have been extensively studied in mouse embryonic stem (ES) cells, which are generally cultured in the absence of Vitamin C, a potential co-factor for Fe(II) 2-oxoglutarate dioxygenase enzymes like Tets. Here we report that addition of Vitamin C to ES cells promotes Tet activity leading to a rapid and global increase in hmC. This is followed by DNA demethylation of numerous gene promoters and up-regulation of demethylated germline genes. Tet1 binding is enriched near the transcription start site (TSS) of genes affected by Vitamin C treatment. Importantly, Vitamin C, but not other antioxidants, enhances the activity of recombinant human Tet1 in a biochemical assay and the Vitamin C-induced changes in hmC and mC are entirely suppressed in Tet1/2 double knockout (Tet DKO) ES cells. Vitamin C has the strongest effects on regions that gain methylation in cultured ES cells compared to blastocysts and in vivo are methylated only after implantation. In contrast, imprinted regions and intracisternal A-particle (IAP) elements, which are resistant to demethylation in the early embryo, are resistant to Vitamin C-induced DNA demethylation. Collectively, this study establishes that Vitamin C is a direct regulator of Tet activity and DNA methylation fidelity in ES cells. Oct4-GiP mouse embryonic stem (ES) cells were cultured in the presence or absence of Vitamin C (L-ascorbic acid 2-phosphate, 100 M-NM-<g/ml) for 12 or 72 hours. Cells were maintained in N2B27 medium supplemented with LIF (1000 U/ml), MEK inhibitor PD0325901 (1 M-NM-<M), and GSK3M-NM-2 inhibitor CHIR99021 (3 M-NM-<M). Genomic DNA was used for DNA immunoprecipitation with antibodies against 5-hydroxymethylcytosine (hmC) or 5-methylcytosine (mC). Immunoprecipitated DNA was adaptor-ligated for paired-end sequencing on an Illumina HiSeq and sequence reads were aligned to the mm9 mouse reference genome for analysis.
Project description:Background: 5-hydroxymethylcytosine (5-hmC) is a recently discovered epigenetic modification that is altered in cancers. Genome wide assays for 5-hmC determination are needed as many of the techniques commonly used to assay 5-methylcytosine (5-mC), including conventional methyl-sensitive restriction digest and bisulfite sequencing, are incapable of distinguishing between 5-mC and 5-hmC. Results: Glycosylation of 5-hmC residues by beta-Glucosyl Transferase (beta-GT) can make CCGG residues insensitive to digestion by MspI. We used this premise to modify the HELP-tagging assay to identify both 5-mC and 5-hmC loci in the genome. Comparison of sequencing libraries after HpaII, MspI and MspI+ beta-GT conversion resulted in locus specific 5-mC and 5-hmC determination. A custom bioinformatics pipeline was created to identify 5-hmC sites that were validated at global level by LS-MS and the locus specific level by qRT-PCR of 5-hmC pulldown DNA. Hydroxymethylation at both promoter and intragenic locations correlated positively with gene expression. Analysis of pancreatic cancer samples revealed striking redistribution of 5-hmC sites in cancer cells and demonstrated enrichment of this modification at many oncogenic promoters such as GATA6. Conclusions: The HELP-GT assay allows a high resolution, simultaneous determination of 5-hmC and 5-mC loci from small amounts of DNA with the utilisation of modest sequencing resources. Redistribution of 5-hmC seen in cancer highlights the importance of examining this modification in conjugation with conventional methylome analysis. We did methylation and hydroxymethylation tests for one control and two pancreatic cancer cases
Project description:Precise regulation of DNA methylation in mammals is critical for genome stability and epigenetic regulation. The discovery of the ten-eleven translocation (TET) proteins catalyzing the oxidation from 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC) revolutionized the perspective on the complexity and regulation of DNA modifications. Despite accumulating knowledge about the role of TET1, it remains unclear to what extent these can be attributed to its catalytic activity. Here, we use genome engineering and quantitative multi-omics approaches to dissect the role and mechanism of TET1 in mESCs. Our study identifies TET1 as an essential interaction hub for multiple chromatin modifying complexes and as a global regulator of histone modifications. Strikingly, we find that the majority of transcriptional regulation depends on non-catalytic functions of TET1. Moreover, we show that the establishment of H3K9me3 and H4K20me3 at ERV1, ERVK, and ERVL is mediated by TET1 independent of DNA demethylation. We provide evidence that repression of endogenous retroviruses depends on the interaction between TET1 and SIN3A. In summary, we demonstrate that the non-catalytic functions of TET1 are critical for regulation of gene expression and the silencing of endogenous retroviruses in mESCs.
Project description:Surveillance of DNA methylation in mammals is critical for genome stability and epigenetic regulation. The discovery of the ten-eleven translocation (TET) proteins catalyzing the oxidation from 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC) revolutionized the understanding of DNA methylation dynamics. Interestingly, in recent years evidence accumulated that TET1 also harbours non-catalytic functions. However, the role and mechanism of TET1 DNA demethylation independent functions still remain poorly understood. Here, we use genome engineering and quantitative multi-omics approaches to dissect the non-catalytic role of TET1. Strikingly, we find that the majority of transcriptional regulation depends on non-catalytic functions of TET1. To gain insights into possible mechanisms by which TET1 regulates transcription independent of DNA demethylation, we asked if the loss of TET1 is accompanied by changes in the histone modificaiton landscape. To this end, we compared the relative abundances of core histone modifications between Tet1 KO, Tet1 CM and WT mESCs using quantitative LC-MS/MS analysis. Surprisingly, we observed a profound global reduction of pH4Kac and H4K20me3 as well as H3K27me3 in Tet1 KO mESC. Vice versa, the monomethylation states of the latter two residues, H3K27me1 and H4K20me1 were significantly increased in Tet1 KO. Similar to the results from the transcriptome data, most of these changes were specific to Tet1 KO cells.
Project description:Muscle invasive bladder cancer (MIBC) is highly heterogeneous, both at the molecular level and in terms of clinical progression. Several molecular classifications have been proposed to understand this heterogeneity and contribute to diagnosis and treatment. Although the neuroendocrine-like subtype is the most aggressive and exhibits the worst survival rate when compared to other subtypes, molecular mechanisms underlying neuroendocrine differentiation have not yet been understood. The nuclear localization of β-catenin is known to be associated with the activation of the Wnt/β-catenin pathway, and it is linked to disease progression and aggressiveness in various cancer types. To decipher the mechanisms underlying the neuroendocrine differentiation of bladder cancer, we determined β-catenin expression profiles of 169 T2-stage primary MIBC samples. Immunohistochemistry analysis revealed increased expression of the most widely used NE markers SYP, CGA, and CD56 in β-catenin positive MIBC tumors. As a result of our transcriptomic analysis, we observed higher expression of neuroendocrine differentiation-related genes, and lower expression of basal differentiation and urothelial differentiation-related genes in β-catenin positive MIBC tumors. Furthermore, we applied a molecular consensus classifier to β-catenin positive and negative samples, and the NE score was significantly higher in β-catenin positive MIBC compared to others. By comparing transcriptome profiles, we reveal that β-catenin positive MIBC harbor unique gene modules and gene expression profiles that are divergent from the β-catenin negative MIBC. GO term and KEGG pathway analyses showed that various neurogenesis-related pathways as well as regulation of gene expression and chromatin remodeling were significantly enriched at β-catenin positive MIBC. Our results collectively revealed that β-catenin expression contributes to neuroendocrine differentiation of bladder cancer.
Project description:Background: 5-hydroxymethylcytosine (5-hmC) is a recently discovered epigenetic modification that is altered in cancers. Genome wide assays for 5-hmC determination are needed as many of the techniques commonly used to assay 5-methylcytosine (5-mC), including conventional methyl-sensitive restriction digest and bisulfite sequencing, are incapable of distinguishing between 5-mC and 5-hmC. Results: Glycosylation of 5-hmC residues by beta-Glucosyl Transferase (beta-GT) can make CCGG residues insensitive to digestion by MspI. We used this premise to modify the HELP-tagging assay to identify both 5-mC and 5-hmC loci in the genome. Comparison of sequencing libraries after HpaII, MspI and MspI+ beta-GT conversion resulted in locus specific 5-mC and 5-hmC determination. A custom bioinformatics pipeline was created to identify 5-hmC sites that were validated at global level by LS-MS and the locus specific level by qRT-PCR of 5-hmC pulldown DNA. Hydroxymethylation at both promoter and intragenic locations correlated positively with gene expression. Analysis of pancreatic cancer samples revealed striking redistribution of 5-hmC sites in cancer cells and demonstrated enrichment of this modification at many oncogenic promoters such as GATA6. Conclusions: The HELP-GT assay allows a high resolution, simultaneous determination of 5-hmC and 5-mC loci from small amounts of DNA with the utilisation of modest sequencing resources. Redistribution of 5-hmC seen in cancer highlights the importance of examining this modification in conjugation with conventional methylome analysis.
Project description:Ten-eleven translocation (Tet) family-mediated DNA oxidation represents a novel epigenetic modification capable of converting 5-methylcytosine (5-mC) to 5-hydroxymethylcytosine (5-hmC) to regulate various biological processes. However, it is unknown whether the Tet family affects mesenchymal stem cells (MSCs) or the skeletal system. Here we show that depletion of Tet1 and Tet2 resulted in impaired self-renewal and differentiation of bone marrow MSCs (BMMSCs) and a significant osteopenia phenotype. Mechanistically, Tet1 and Tet2 deficiency reduced demethylation of the P2rX7 promoter and thus downregulated exosome release, leading to intracellular accumulation of miR-297a-5p, miR-297b-5p, and miR-297c-5p. These miRNAs inhibited Runx2 signaling to impair BMMSC function. We show that overexpression of P2rX7 consistently rescued the impaired BMMSCs and osteoporotic phenotype in Tet1 and Tet2 double knockout mice. These results indicate that Tet1 and Tet2 play a critical role in maintaining BMMSC and bone homeostasis through epigenetic regulation of P2rX7 to control exosome and miRNA release. This newly identified Tet/P2rX7/Runx2 cascade may serve as a target for the development of novel therapies for osteopenia disorders.
Project description:We analyzed the genome-wide binding of Tet1 in control (shScr) and Tet1 knockdown (shTet1) mouse ES cells using two different Tet1 antibodies (Tet1-C and Tet1-N). Furthermore, we generated genome-wide mapping of hydroxymethyl cytosine (hmC) and methyl cytosine (mC). We find that hmC, in contrast to mC, is also found at transcription start sites (TSSs), and that there is a significant overlap between Tet1 binding and hmC positive regions. Surprisingly, our results also suggest, that Tet1 has a role in transcriptional repression. We showed that Tet1 associates with Sin3A co-repressor complex, and by performing ChIP-sequencing of Sin3A, we find co-localisation of Tet1 and Sin3a throughout the genome Examination of Tet1 and Sin3A binding as well as hmC and mC localization in mouse ES cells