Abiotic stress response and adaptive phenology in fruit trees
Ontology highlight
ABSTRACT: Due to the broad climate adaptation of perennial trees, phenological traits (e.g. chilling requirement-CR, bloom date-BD) exhibit complex inheritance patterns. Conceptually, these are adaptive responses to abiotic stress. As production depends on traits like CR, breeders have developed varieties that are phenotypically/genotypically matched to particular geographic/temperature zones. These genotypes are ideal for study of gene networks governing these climate-critical traits. Using genetic approaches, genome-wide association analyses, functional and comparative genomics in fruit and forest trees, we identified a foundational network of genetic activity (phenylpropanoid pathway) linking winter cold stress response to control of the endodormancy-ecodormancy transition (EET) and seed stratification. Our goal is to examine during endodormancy the allelic effects of genes controlling the production of stress related metabolic intermediates that regulate seed stratification, thus linking these two cold temperature responses. Our objective is to use a transcriptome sequencing approach to characterize genotypic effects on the phenylpropanoid gene network transcriptome during endodormancy and the EET. These adaptive genes and gene networks will be targets for knowledge based breeding strategies of fruit and forest trees to sustain and improve these resources to meet the challenges of rapid environmental change
Project description:Climate change forecasts increase the susceptibility of forest due to longer drier seasons. The adaptive management protocols have highlighted the reduction of the forest densification to improve their vulnerability to extreme climate events (i.g. drought). One of this sensitive woody species to climate change is the Abies pinsapo, a relic conifer tree endemic from the southern Spain. Previous works have shown changes in their trends because of the climate change action, being carried out experimental thinning management in their lowest distribution limit, in Sierra de las Nieves Natural Park (Malaga). Our objective is to evaluate the water improvements of thinned trees in terms of light availability by means of a shading treatment in those thinned trees. To do that we have evaluated the synergic effect of ecophysiology, metabolomics and transcriptomics in control, thinning and thinning+shading plots in wet and dry seasons for two years. The results showed strong differences between summer and spring seasons at the three studied levels. The water deficit shows a greater influence than light exposure in the ecophysiology and metabolomics tree response. And the transcriptomics suggested an improvement of thinned trees when light exposure was reduced. Our results support the necessity of adaptive forest management in order to improve the conservation status of A. pinsapo forest. The combination of different levels of tree response is paramount to understand and predict the tree physiology under water and light stress conditions.
Project description:Bud dormancy is a crucial stage in perennial trees and allows survival over winter and optimal subsequent flowering and fruit production. Environmental conditions, and in particular temperature, have been shown to influence bud dormancy. Recent work highlighted some physiological and molecular events happening during bud dormancy in trees. However, we still lack a global understanding of transcriptional changes happening during bud dormancy. We conducted a fine tune temporal transcriptomic analysis of sweet cherry (Prunus avium L.) flower buds from bud organogenesis until the end of bud dormancy using next-generation sequencing. We observe that buds in organogenesis, paradormancy, endodormancy and ecodormancy are characterised by distinct transcriptional states, and associated with different pathways. We further identified that endodormancy can be separated in two phases based on its transcriptomic state: early and late endodormancy. We also found that transcriptional profiles of just 7 genes are enough to predict the main cherry tree flower buds dormancy stages. Our results indicate that transcriptional changes happening during dormancy are robust and conserved between different sweet cherry cultivars. Our work also sets the stage for the development of a fast and cost effective diagnostic tool to molecularly define the flower bud stage in cherry trees.
Project description:Manipulating the crop load in peach trees determines carbon supply and optimum balance between fruit yield and quality potentials. The impact of carbon supply on peach fruit quality was assessed in three development stages (S2, S3, S4) on fruit of equal maturity from trees that were carbon (C) starved (unthinned) and sufficient (thinned). Previous studies determined that primary metabolites of peach fruit mesocarp are mainly linked with developmental processes, thus, the secondary metabolite profile was assessed using non-targeted liquid chromatography mass-spectrometry (LC-MS). Carbon sufficient (C-sufficient) fruit demonstrated superior quality attributes as compared to C-starved fruit. Early metabolic shifts in the secondary metabolome appear to prime quality at harvest. Enhanced C-availability facilitated the increased and consistent synthesis of flavonoids, like catechin, epicatechin and eriodyctiol, via the phenylpropanoid pathway, providing a link between the metabolome and fruit quality, and serving as signatures of C-sufficiency during peach fruit development.
Project description:In deciduous fruit trees, entrance into dormancy occurs in later summer/fall, concomitantly with the shortening of day length and decrease in temperature. Generally speaking, dormancy can be divided into endodormancy, ecodormancy and paradormancy. In Prunus species flower buds, entrance into the dormant stage occurs when the apical meristem is partially differentiated; during dormancy, flower verticils continue their growth and differentiation. In this work we focused our attention on flower bud development during winter in peach. In order to understand how bud development progress is regulated during winter we integrated cytological epigenetic and chromatin genome wide data with transcriptional outputs to obtained a complete picture of the main regulatory pathways involved in endodormancy.
Project description:In deciduous fruit trees, entrance into dormancy occurs in later summer/fall, concomitantly with the shortening of day length and decrease in temperature. Generally speaking, dormancy can be divided into endodormancy, ecodormancy and paradormancy. In Prunus species flower buds, entrance into the dormant stage occurs when the apical meristem is partially differentiated; during dormancy, flower verticils continue their growth and differentiation. In this work we focused our attention on flower bud development during winter in peach. In order to understand how bud development progress is regulated during winter we integrated cytological epigenetic and chromatin genome wide data with transcriptional outputs to obtained a complete picture of the main regulatory pathways involved in endodormancy.
Project description:In a context of climate changes, water availability is expected to become a limiting factor for plant growth and to have an impact on forest health. In order to identify genes involved in shoot phenotypic plasticity in response to variations in water availability in trees, DNA methylation patterns were investigated in the shoot apical meristem (SAM) of Populus deltoides × P. nigra hybrid cuttings submitted to a moderate water deficit followed by a rewatering step. Transcriptomic response was also studied and is another GEO submission.
Project description:Perennial plants, like fruit trees grown in temperate regions, are characterized by bud dormancy, a rest state that protects the bud from cold during winter. At the same time, these plants have developed a requirement for winter chill for correct flowering. However, winters are becoming increasingly warm in temperate regions, resulting in dramatic effects on the flowering output and therefore crop yield. A compound that successfully compensates for missing winter chill is hydrogen cyanamide, which has been used to synchronize and advance flowering time in a range of commercially important fruit crops. Hydrogen cyanamide also represents a unique tool for researchers to study controlled endodormancy release. Here, we treated dormant sweet cherry flower buds with hydrogen cyanamide, sampling flower buds at different time points after treatment. RNAseq revealed more than 6,000 hydrogen cyanamide-responsive genes. In accordance with these results, hydrogen cyanamide treatment increased the levels of jasmonoyl-isoleucine (JA-Ile) and the cytokinins trans-zeatin riboside (tZR), dihydrozeatin (DZ) and dihydrozeatin riboside (DZR). Furthermore, hydrogen cyanamide affected the expression of antioxidant- and cell wall loosening-associated transcripts. These results suggest a complex mechanism of action for hydrogen cyanamide-induced endodormancy release, including key roles for JA-Ile, zeatin-type cytokinins and hydrogen cyanide.
Project description:Young Fagus sylvatica trees (approximately 7 to 8 years) were collected from a natural regeneration beech forest. The trees were excavated with intact soil cores, roots and top organic layer. The trees were then kept outdoors at the Department of Forest Botany, Georg-August-Universität Göttingen. Plants were protected from rain, and light conditions were matched to those of the natural stand using a shading net; otherwise, plants were exposed to natural climatic conditions. The soil moisture was regularly measured; plants were watered with deionized water as needed to keep soil moisture close to the original conditions. Trees was randomly relocated on a weekly basis throughout the experiment to avoid biasses caused by location or light effects. After 21 weeks, a treatment was applied to understand the physiological mechanisms of inorganic nitrogen uptake and assimilation under conditions of an inorganic nitrogen saturated forest simulation: Plants were fertilized with either a 20 mM solution of KNO3, a 20 mM solution of NH4Cl, or demineralized water (control) for 2 days. On the third day, the trees were harvested. Root tips were immediately shock-frozen in liquid nitrogen and used for RNA extraction.
Project description:The majority of trees live in association with symbiotic fungi, which facilitate their access to soil nutrients. The ectomycorrhizal symbiosis represents a complex biological system involving multifaceted interactions between the two partners. The establishment of the symbiosis depends on various conditions (e.g. climate), but also on the genetic traits of the partners. To evaluate the impact of the genetic predisposition on the development and functioning of ectomycorrhizas, we compared the transcriptome of roots from Populus trichocarpa and Populus deltoides colonized with Laccaria bicolor.
Project description:Wood stiffness is the most important wood quality trait of forest trees for structural timber production. We investigated genes differentially transcribed in radiate pine trees with distinct wood stiffness using bulked segregant analysis (BSA) and cDNA microarrays. Transcript accumulation in earlywood (EW) and latewood (LW) of high (HS) and low stiffness (LS) trees in two progeny trials was compared.