Identification of HSF1- target genes involved in thermal stress in the Pacific oyster Crassostrea gigas by ChIP-seq
Ontology highlight
ABSTRACT: The Pacific oyster Crassostrea gigas, a commercially important species inhabiting the intertidal zone, can tolerate temperature fluctuations. Heat shock transcription factor 1 (HSF1) plays an important role in the process of resistance of thermal stress. However, HSF1 has not been fully characterized in the Pacific oyster. C. gigas with an expansion of heat shock protein (HSP) 70. In this study, we analyzed genes regulated by HSF1 in response to heat shock by Chromatin immunoprecipitation followed sequencing (ChIP-seq), determined the expression patterns of target genes by qRT-PCR, and validated the regulatory relationship between one HSP70 and HSF1. We found 916 peaks corresponding to specific binding sites of HSF1, and peaks were annotated to nearest genes. In Gene Ontology analysis, HSF1 target genes was related to signal transduction, energy production, and response to biotic stimulus. Four HSP70 genes, two HSP40 genes, and one small HSP gene exhibited binding to HSF1. One HSP70 with a binding site in the promoter region was validated to be regulated by HSF1 under heat shock. These results provide a basis for future studies aimed at determining the mechanisms underlying thermal tolerance and provide insights into gene regulation in the Pacific oyster.
ORGANISM(S): Magallana gigas
PROVIDER: GSE138959 | GEO | 2020/10/16
REPOSITORIES: GEO
ACCESS DATA