ABSTRACT: Implantation is crucial for placental development which directly impacts fetal growth and pregnancy success with possible consequences on post-natal health. We postulated that early perturbations of the conceptus-maternal environment communication may alter the endometrium physiology that could account for the final reproductive outcome. Using cattle as an animal model, we compared gene expression profiles of the endometrial caruncular and intercaruncular areas during the critical period of implantation in three types of pregnancies: artificial insemination (AI), in vitro fertilization with embryo transfer (IVF-ET) or somatic cell nuclear transfer (SCNT). Less than 35% of the differentially expressed genes were found to be common between AI, IVF-ET, and SCNT conditions. Compared to AI, numerous biological functions and several canonical pathways and genes were found to be significantly affected in IVF-ET or SCNT, with a major impact on metabolism and immune function in SCNT. Our data show that the endometrium can fine-tune its physiology and could be considered as a biological sensor in response to pregnancy manipulations. Determining the limits of the endometrial plasticity should bring new insights on the contribution of the maternal compartment to the pregnancy outlet. Keywords: Fluorescence Microarray - Dye switch loop design
Project description:Implantation is crucial for placental development which directly impacts fetal growth and pregnancy success with possible consequences on post-natal health. We postulated that early perturbations of the conceptus-maternal environment communication may alter the endometrium physiology that could account for the final reproductive outcome. Using cattle as an animal model, we compared gene expression profiles of the endometrial caruncular and intercaruncular areas during the critical period of implantation in three types of pregnancies: artificial insemination (AI), in vitro fertilization with embryo transfer (IVF-ET) or somatic cell nuclear transfer (SCNT). Less than 35% of the differentially expressed genes were found to be common between AI, IVF-ET, and SCNT conditions. Compared to AI, numerous biological functions and several canonical pathways and genes were found to be significantly affected in IVF-ET or SCNT, with a major impact on metabolism and immune function in SCNT. Our data show that the endometrium can fine-tune its physiology and could be considered as a biological sensor in response to pregnancy manipulations. Determining the limits of the endometrial plasticity should bring new insights on the contribution of the maternal compartment to the pregnancy outlet. Keywords: Fluorescence Microarray - Dye switch loop design 44 samples
Project description:Implantation is crucial for placental development whose quality will directly impact fetal growth and pregnancy success with possible consequences on post-natal health. We postulated that early perturbations of the conceptus-maternal environment communication may alter the endometrium physiology that could account for the final reproductive outcome. Using cattle as an animal model, we compared gene expression profiles of the endometrial caruncular and intercaruncular areas at implantation in three types of pregnancies, namely artificial insemination (AI), in vitro fertilization with embryo transfer (IVF-ET) or somatic cell nuclear transfer (SCNT). Less than 35% of the differentially regulated genes were found to be common between AI, IVF-ET, and SCNT conditions. Compared to AI, numerous biological functions and several canonical pathways and genes were found to be significantly affected in IVF-ET or SCNT, with a major impact on metabolism and immune function in SCNT. Our data show that endometrium can fine-tune its physiology and could be considered as a biological sensor in response to pregnancy manipulations. Determining the limits of the endometrial plasticity should bring new insights on the contribution of the maternal compartment to the issue of pregnancy. Keywords: Fluorescence Microarray 30 samples
Project description:Implantation is crucial for placental development whose quality will directly impact fetal growth and pregnancy success with possible consequences on post-natal health. We postulated that early perturbations of the conceptus-maternal environment communication may alter the endometrium physiology that could account for the final reproductive outcome. Using cattle as an animal model, we compared gene expression profiles of the endometrial caruncular and intercaruncular areas at implantation in three types of pregnancies, namely artificial insemination (AI), in vitro fertilization with embryo transfer (IVF-ET) or somatic cell nuclear transfer (SCNT). Less than 35% of the differentially regulated genes were found to be common between AI, IVF-ET, and SCNT conditions. Compared to AI, numerous biological functions and several canonical pathways and genes were found to be significantly affected in IVF-ET or SCNT, with a major impact on metabolism and immune function in SCNT. Our data show that endometrium can fine-tune its physiology and could be considered as a biological sensor in response to pregnancy manipulations. Determining the limits of the endometrial plasticity should bring new insights on the contribution of the maternal compartment to the issue of pregnancy. Keywords: Fluorescence Microarray
Project description:This SuperSeries is composed of the following subset Series: GSE14047: Comparison between caruncles and intercaruncles in AI, IVF-ET and SCNT pregnancies GSE14050: AI versus IVF-ET & AI versus SCNT Refer to individual Series
Project description:Although somatic cell nuclear transfer (SCNT) cloning is more efficient in bovine than in all other species tested so far, there is a high rate of pregnancy failure that has been linked to structural and functional abnormalities of the placenta. We tested the hypothesis that these changes may originate from disturbed embryo-maternal interactions in the pre-implantation period. Therefore, we evaluated the transcriptome response of the endometrium to SCNT embryos (produced from five different donor cell cultures) as compared to embryos derived from in vitro fertilization (IVF). SCNT embryos and IVF embryos were cultured under identical conditions to the blastocyst stage (Day 8) and transferred to recipients. The recipients were slaughtered at day 18 of pregnancy and the uterus was recovered. Pregnancy was verified by the presence of at least one normally developed embryo. Transcriptome profiling of endometrium samples using a custom cDNA microarray covering transcripts expressed in the endometrium and/or oviduct epithelium revealed 58 transcripts that were differently abundant between endometrium samples from SCNT vs. IVF pregnancies. Prominent examples are NR2F2 (encoding the orphan nuclear receptor COUP-TFII) and GJA1 (encoding connexin 43). Both transcripts are known to play important roles in placentation and were significantly less abundant in endometrium from SCNT vs. IVF pregnancies. These findings suggest that placental failure in bovine clone pregnancies may originate from abnormal embryo-maternal communication already in the pre- or peri-implantation period. Endometrium transcriptome profiles may serve as a novel readout to evaluate SCNT embryos for their ability to induce pregnancy with a functional placenta. Keywords: response to different embryos Nineteen German Fleckvieh (Simmental) heifers were slaughtered at day 18 of pregnancy. Cycle-synchronized recipient heifers received either IVP or SCNT embryos at day 7 of the estrous cycle. Animals were slaughtered at day 18. Endometrial (intercaruncular) tissue samples were obtained from 10 pregnant animals after transfer of IVP embryos and from 9 pregnant animals after transfer of SCNT embryos.
Project description:Although somatic cell nuclear transfer (SCNT) cloning is more efficient in bovine than in all other species tested so far, there is a high rate of pregnancy failure that has been linked to structural and functional abnormalities of the placenta. We tested the hypothesis that these changes may originate from disturbed embryo-maternal interactions in the pre-implantation period. Therefore, we evaluated the transcriptome response of the endometrium to SCNT embryos (produced from five different donor cell cultures) as compared to embryos derived from in vitro fertilization (IVF). SCNT embryos and IVF embryos were cultured under identical conditions to the blastocyst stage (Day 8) and transferred to recipients. The recipients were slaughtered at day 18 of pregnancy and the uterus was recovered. Pregnancy was verified by the presence of at least one normally developed embryo. Transcriptome profiling of endometrium samples using a custom cDNA microarray covering transcripts expressed in the endometrium and/or oviduct epithelium revealed 58 transcripts that were differently abundant between endometrium samples from SCNT vs. IVF pregnancies. Prominent examples are NR2F2 (encoding the orphan nuclear receptor COUP-TFII) and GJA1 (encoding connexin 43). Both transcripts are known to play important roles in placentation and were significantly less abundant in endometrium from SCNT vs. IVF pregnancies. These findings suggest that placental failure in bovine clone pregnancies may originate from abnormal embryo-maternal communication already in the pre- or peri-implantation period. Endometrium transcriptome profiles may serve as a novel readout to evaluate SCNT embryos for their ability to induce pregnancy with a functional placenta. Keywords: response to different embryos
Project description:Administration of GnRH antagonist in IVF has several advantages. However, studies have shown that GnRH antagonist protocol cycles have lower implantation and clinical pregnancy rates than GnRH agonist long protocol cycles. Endometrial receptivity rather than embryo quality is thought to account for this phenomenon, however the mechanism is still largely unknown. This microarray analysed human endometrium during ‘implantation window phase’ between three groups: 1) untreated control, 2) GnRH agonist long protocol, and 3) GnRH antagonist protocol. The differential gene between groups uncovered the molecular mechanism occurred in endometrium affected by the intake of GnRH agonist or GnRH antagonist. Further study of these differential gene promises to find the reasons for lower endometrial receptivity in patients treated with GnRH antagonist and to improve the implantation rate in GnRH antagonist protocols in IVF.
Project description:CONTEXT Nowadays, the molecular mechanisms involved in endometrial receptivity and implantation are still not clear. OBJECTIVE The gene expression of human endometrium of patients undergoing an IVF treatment with GnRH antagonists/rec-FSH was studied. CONCLUSIONS COX-2 has been extensively studied as a crucial fertility element in both knock-out mice and human. It appears that increased expression of COX-2 and/or SCGB1D2 on the day of oocyte retrieval in GnRH antagonist/rec-FSH stimulated cycles coincides with a lower probability of achieving a clinical pregnancy in this cycle. Keywords: gene expression analysis, clinical pregnancy in IVF stimulated cycles Endometrial biopsies taken from patients on day of oocyte retrieval in stimulated IVF cycles with 1 or 2 embryos replaced in the same cycle. Gene expression of pregnant patients (n=4) was compared with matched non-pregnant patients (n=4)
Project description:Embryo implantation into maternal endometrium is critical for initiation and establishment of pregnancy, requiring developmental synchrony between endometrium and blastocyst. However, factors regulating human endometrial-embryo cross talk and facilitate implantation remain largely unknown. Extracellular vesicles (EVs) are emerging as important mediators of this process. Here, human trophectomderm stem cell-derived EVs were shown to transfer to and regulate human endometrial cells towards processes associated with implantation. Importantly, transfer of trophectoderm EV cargo proteins to endometrial cells to mediate changes in polarity is demonstrated.