Fibrosis growth factor 23 is a promoting factor for cardiac fibrosis in the presence of transforming growth factor-β1
Ontology highlight
ABSTRACT: We demonstrated that, four weeks after the pulmonary artery banding (PAB) operation, rats could be divided into two groups: an F+ group in which the fibrotic area occupied more than 6.5% of the whole area of the heart tissues, and an F- group in which the fibrotic area occupied less than 6.5% of this area. We used microarrays to elucidate the fibrosis initiating master factor using heart samples obtained from PAB or sham-operated rats.
Project description:The molecular mechanisms of progressive right heart failure are incompletely understood. We systematically examined transcriptomic changes occurring over months in isolated cardiomyocytes or whole heart tissues from failing right and left ventricles in rat models of pulmonary artery (PAB) or aortic banding (AOB). Detailed bioinformatics analyses resulted in the identification of gene signatures, protein, and transcription factor networks specific to ventricles and compensated or decompensated disease states. Proteomic and RNA-FISH analyses confirmed PAB-mediated regulation of key genes (including proenkephalin) and revealed spatially heterogeneous mRNA expression in the heart. Intersection of rat PAB-specific gene sets with transcriptome data sets from human patients with chronic thromboembolic pulmonary hypertension led to the identification of more than 50 genes whose expression levels correlated with the severity of right heart disease, including multiple matrix-regulating and secreted factors. These data define a conserved, differentially regulated genetic network associated with right heart failure in rats and humans
Project description:This study aims to compared mRNA expression between radiation-induced fibrotic skin and adjacent normal tissues of rats by RNA-Seq. Male Sprague-Dawley (SD) rats (4 weeks old) were irradiated with a single 45-Gy dose of irradiation was administered to the treatment area at a rate of 750 cGy/min using a 6-MeV electron beam accelerator (Clinac 2100EX, Varian Medical Systems, Inc., CA). Skin tissues from nonirradated skin areas and irradietd areas were collected and subjected to mRNA expression analysis.
Project description:This study aims to compared the genome-wide DNA methylation status in radiation-induced fibrotic skin and adjacent normal tissues of rats by methylated DNA immunoprecipitation sequencing (MeDIP-Seq). Male Sprague-Dawley (SD) rats (4 weeks old) were irradiated with a single 45-Gy dose of irradiation was administered to the treatment area at a rate of 750 cGy/min using a 6-MeV electron beam accelerator (Clinac 2100EX, Varian Medical Systems, Inc., CA). Skin tissues from nonirradated skin areas and irradietd areas were collected and subjected to DNA methylation analysis by MeDIP.
Project description:Heart failure is among the leading causes of death globally. Ventricular failure progresses through a hypertrophic compensatory phase followed by failure of the ventricle function through rapid decompensation. In order to unravel right heart specific mechanisms of disease, rat animal models were established that (i) reflect the slowly progressive mode of compensation / decompensation and (ii) allow comparative analyses of left versus right heart failure in the same experimental set up. Non-restrictive clips around the pulmonary artery (pulmonary artery banding, PAB) or the aorta (aortic banding, AOB) were surgically implanted into weanling rats. Upon animal growth the clips become increasingly constrictive, leading to a compensatory, hypertrophic state at around 6 weeks and heart failure at 21 (PAB) or 24 weeks (AOB). Disease progression was monitored functionally and by sonography. Differential gene expression analysis was performed for all three treatment groups (sham, AOB, PAB), at both time points (compensation, decompensation) and for both ventricles.
Project description:Background: Current mammalian model for heart regeneration research is limited in apex amputation or myocardium infarction, both of which are controversy. Moreover, RNAseq demonstrated there were a very limited set of differential expressed genes between sham and operation heart in the myocardium infarction model. Here we investigated whether pressure overload in the right ventricle(RV), a common phenomenon in congenital heart disease children, could be a better animal model for heart regeneration study when consider cardiomyocyte(CM) proliferation as the most important index. Methods and results: Pressure overload was induced by pulmonary artery banding (PAB) on day1 and confirmed by echocardiography and hemodynamic measurements at postnatal day 7(P7). RNAseq analyses of purified RVCM at P7 from PAB and sham-operated rats revealed there were 5469 differential expressed genes between these two groups. GO and KEGG analysis showed that these genes mainly mediated mitosis and cell division. Cell proliferation assay indicates a continuous over-proliferation of RVCM after PAB, in particular for P3. In addition, there were ~2 times-fold increase of Ki67/Phh3 -positive CM in human overload RV compared to non-overload RV. Other features about this model included CM hypotrophy and no fibrosis.. Conclusions: Pressure overload profoundly promotes RVCM proliferation in the neonatal stage both in rats and human beings, activated a regeneration-specific gene program, and may offer a better alternative animal model for heart regeneration research..
Project description:This study aims to compared the genome-wide Ying Yang-1 (YY1) binding DNA sequences in radiation-induced fibrotic skin and adjacent normal tissues of rats by ChIP-Seq. Male Sprague-Dawley (SD) rats (4 weeks old) were irradiated with a single 45-Gy dose of irradiation was administered to the treatment area at a rate of 750 cGy/min using a 6-MeV electron beam accelerator (Clinac 2100EX, Varian Medical Systems, Inc., CA). Skin tissues from nonirradated skin areas and irradietd areas were collected and subjected to ChIP of YY1.
Project description:We found that EGFR expression increased in interstitial myofibroblasts in human and mouse fibrotic kidneys. Selective EGFR deletion in the fibroblast/pericyte population inhibited interstitial fibrosis in response to unilateral ureteral obstruction, ischemia or nephrotoxins. We used single-nucleus RNA sequencing analysis to demonstrate the role of EGFR activation in UUO model.
Project description:Fibrosis is a hallmark of chronic disease. Although fibroblasts are known to be involved, it is unclear to what extent endothelial cells might contribute. We detected increased expression of the transcription factor Sox9 in endothelial cells of fibrotic mouse organs in models of systolic heart failure by pressure overload, diastolic heart failure by high-fat diet and L-Name administration, pulmonary fibrosis after bleomycin treatment, and liver fibrosis as consequence of CDAA diet. We also observed endothelial SOX9 upregulation in human heart tissue in patients with heart failure. To test whether this SOX9 induction was sufficient to cause disease, we generated mice with endothelial cell-specific overexpression of Sox9, which indeed triggered extensive fibrosis in multiple organs and promoted signs of heart failure. Endothelial Sox9 deletion, in turn, prevented fibrosis and organ dysfunction in pre-clinical surgical and pharmacological mouse models of heart failure as well as of lung, and liver injury. Bulk and single cell RNA sequencing of endothelial cells across multiple vascular beds revealed that SOX9 induced extracellular matrix, growth factor, and inflammatory genes leading to matrix deposition by endothelial cells. Moreover, in part through triggering an increased expression of the secreted growth factor Ccn2 as direct SOX9 target, endothelial cells activated neighboring fibroblasts to migrate and deposit matrix in response to SOX9. Endothelial Sox9 deletion reversed these changes, suggesting a role for endothelial SOX9 as fibrosis-promoting transcription factor across organs in response to disease stimuli. Therefore, endothelial cells could be a promising target to counteract fibrotic heart, liver and lung disease
Project description:Fibrotic changes in the myocardium and cardiac arrhythmias represent fatal complications in rheumatic disease systemic sclerosis (SSc), however the underlying mechanisms remain elusive. Fos-related antigen-2 (Fosl-2) has been implicated in development of organ fibrosis. Mice overexpressing Fosl-2 (Fosl-2tg) showed interstitial cardiac fibrosis, disorganized connexin43/40 in intercalated discs and deregulated expression of genes controlling conduction system. Fosl-2tg mice developed higher heart rate (HR), prolonged QT intervals, arrhythmias with prevalence of premature ventricular contractions, ventricular tachycardias, II-degree atrio-ventricular blocks and reduced HR variability. Following stimulation with isoproterenol Fosl-2tg mice showed impaired HR response. To assess the role of inflammation in cardiac fibrosis we used Rag2-/-Fosl-2tg mice lacking T/B cells. These mice showed no myocardial fibrosis and ECG abnormalities. Transcriptomics analysis of cardiac Rag-2-/-Fosl-2wt/Rag2-/-Fosl-2tg/Fosl-2tg fibroblasts revealed that systemic inflammation triggered fibrotic and arrhythmogenic alterations while Fosl-2-overexpression mediated profibrotic signature. In human cardiac fibroblasts FOSL-2-overexpression enhanced myofibroblast signature under proinflammatory or profibrotic stimuli. These results demonstrate that under immunofibrotic conditions activator protein 1 transcription factor component Fosl-2 exaggerates myocardial fibrosis, arrhythmias and aberrant response to stress.
Project description:Right ventricular failure (RVF) due to pressure load is a major cause of death in congenital heart diseases and pulmonary hypertension. The mechanisms of RVF are yet unknown. Research is hampered by the lack of a good RVF model. Our aim was to study the pathophysiology of RVF in a rat model of chronic pressure load. Wistar rats (n=19) were subjected to pulmonary artery banding (PAB, 1.1mm) or sham surgery (CON). All PAB rats developed RVF (reduced cardiac output, RV stroke volume, TAPSE, increased end diastolic pressure, all p<0.05 vs. CON) but clinical symptoms of RVF (inactivity, ruffled fur, dyspnea, ascites) necessitating termination ensued in a subset (5/12) of rats (RVF+) after a period of 52±5 days. Rats with RVF+ had significantly worse RV function and pericardial effusion and liver congestion compared to RVF rats without symptoms (all p<0.05), despite similar pressure load (p=NS RVF vs. RVF+). Chronic pulmonary artery banding invariably leads to RV failure in rats, and a subset transitions to advanced clinical RVF. RVF is characterized by enhanced contractility, progressive diastolic dysfunction and derangement of energy metabolism, thus improving diastolic function and targeting RV metabolism may be the keys to treating RVF. Total RNA optainded ( Heart) of 7 Controls ,5 RVF+ and 4 RVF samples where used for this array study