Single-cell transcriptomic analysis of embryonic vasculogenesis identifies the conversion of Etv2-deficient vascular progenitors into skeletal muscle
Ontology highlight
ABSTRACT: During vertebrate embryogenesis, vascular endothelial cells originate in the lateral plate mesoderm (LPM) next to the progenitors of skeletal muscle. It is currently not clear what prevents vascular progenitors from responding to the adjacent signals that promote muscle development. An ETS transcription factor Etv2 functions as an evolutionarily conserved master regulator of vasculogenesis. Here we performed single-cell transcriptomic analysis of hematovascular development in wild-type and etv2 mutant zebrafish embryos. Distinct transcriptional signatures of different types of hematopoietic and vascular progenitors were identified using an etv2ci32Gt gene trap line, in which Gal4 transcriptional activator has integrated into the etv2 gene locus. Unexpectedly, a cell population with the skeletal muscle signature was observed in etv2-deficient embryos. We demonstrate that multiple etv2ci32Gt; UAS:GFP cells migrate into the somites, elongate and differentiate as skeletal muscle cells instead of contributing to vasculature in etv2-deficient embryos. Wnt and FGF signaling promoted the differentiation of these putative multipotent etv2 progenitor cells into skeletal muscle cells. We conclude that etv2 actively represses muscle differentiation in vascular progenitors, thus locking these cells into vascular endothelial fate. We also identified the transcriptional signature of putative multipotent progenitors within the LPM that may give rise to vascular progenitor and skeletal muscle cells. Finally, we demonstrate that arterial progenitors co-express multiple arterial and venous markers during early stages of vasculogenesis, suggesting multi-potency of early vascular progenitors.These findings will be important in understanding the ontogeny of different mesodermal lineages and will help in designing in vitro differentiation strategies to generate vascular, muscle and other types of progenitors for therapeutic purposes.
Project description:An ETS transcription factor Etv2 functions as an evolutionarily conserved master regulator of vasculogenesis. Here we performed single-cell transcriptomic analysis of hematovascular development in wild-type and etv2 mutant zebrafish embryos. Distinct transcriptional signatures of different types of hematopoietic and vascular progenitors were identified using an etv2ci32Gt gene trap line, in which the Gal4 transcriptional activator is integrated into the etv2 gene locus. Unexpectedly, a cell population with a skeletal muscle signature was observed in etv2-deficient embryos. We demonstrate that multiple etv2ci32Gt; UAS:GFP cells migrate into the somites, elongate and differentiate as skeletal muscle cells instead of contributing to vasculature in etv2-deficient embryos.
Project description:We performed single-cell RNAseq analysis of FACs sorted etv2 and jam2b psoitive cells from etv2Gt(2A-Venus) ; jam2bGt(2A-Gal4);UAS:NTR-mCherry zebrafish embryos at 36 hpf using 10x Genomics' Chromium platform. 18 distinct cell populations were identified including vascular endothelial cells and LPM cells.
Project description:Single-cell transcriptomic analysis of embryonic vasculogenesis identifies the conversion of Etv2-deficient vascular progenitors into skeletal muscle
Project description:Single-cell transcriptomic analysis of embryonic vasculogenesis identifies the conversion of Etv2-deficient vascular progenitors into skeletal muscle
Project description:Systemic arterial smooth muscle cells are exposed to a broad range of oxygen concentrations under physiological conditions. Hypoxia can modulate the proliferative response of smooth muscle cells leading to speculation about its role in vasculogenesis, vascular remodelling and the pathogenesis of arterial disease. The effect of hypoxia has been inconsistent, however, with both enhanced proliferation and growth arrest reported. Nevertheless, these reports support an important effect of hypoxia on smooth muscle cell proliferation and, given its physiological and clinical relevance, this requires clarification. We posited that variation in O2 concentration, within the range that exists in vivo, may have different effects on the proliferation and survival of vascular smooth muscle cells. Experiment Overall Design: Human aortic smooth muscle cells (HASMC) were propagated to passage 6 in SMGM-2 medium reached 80% confluence, the media was changed and the cells were incubated for a further 16 hrs or 48 hrs under either normoxic or hypoxic conditions (1% and 3%O2 ).
Project description:Systemic arterial smooth muscle cells are exposed to a broad range of oxygen concentrations under physiological conditions. Hypoxia can modulate the proliferative response of smooth muscle cells leading to speculation about its role in vasculogenesis, vascular remodelling and the pathogenesis of arterial disease. The effect of hypoxia has been inconsistent, however, with both enhanced proliferation and growth arrest reported. Nevertheless, these reports support an important effect of hypoxia on smooth muscle cell proliferation and, given its physiological and clinical relevance, this requires clarification. We posited that variation in O2 concentration, within the range that exists in vivo, may have different effects on the proliferation and survival of vascular smooth muscle cells. Keywords: expression profiles of hypoxia (1% and 3%) in HASMC
Project description:Hypoxia (low oxygen) and Notch signaling are two important regulators of vascular development, but how they interact in controlling the choice between arterial and venous fates for endothelial cells during vasculogenesis is less well understood. In this report, we show that hypoxia and Notch signaling intersect in promotion of arterial differentiation. Hypoxia upregulated expression of the Notch ligand Dll4 and increases Notch signaling, in a process requiring the vasoactive hormone adrenomedullin but not endogenous VEGF. Notch signaling also upregulated Dll4 expression, leading to a positive feedback loop sustaining Dll4 expression and Notch signaling. In addition, functional Notch signaling was required for hypoxia to upregulate the arterial marker genes Depp, connexin40 (Gja5), Cxcr4 and Hey1. In conclusion, the data reveal an intricate interaction between hypoxia and Notch signaling in the control of endothelial cell differentiation, including a hypoxia/adrenomedullin/Dll4 axis that initiates Notch signaling and a requirement for Notch signaling to effectuate hypoxiamediated induction of the arterial differentiation program. 12 microarray samples consisting of >50,000 FACS sorted CD31+ cells purified from wild type mouse CCE ES cells that were differentiated into the endothelial lineages in 3 biological replicates. The ES cells were subjected to embryoid body formation over 4 days in hanging drop cultures, FACS sorted for Flk1 positive vascular progenitors cells and plated for a further 4 days in normoxia (21% oxygen) or hypoxia (1.5-2% oxygen) with or without 4 umol/l gamma-secretase inhibitor L-685.458.
Project description:It has now been well established that hematopoietic stem and progenitor cells originate from a specialised subset of endothelium termed hemogenic endothelium (HE) via an endothelial-to-hematopoietic transition. However, the molecular mechanisms determining which endothelial progenitors possess or not this hemogenic potential is currently unknown. In this study, we investigated the changes in hemogenic potential in endothelial progenitors at the early stages of embryonic development. We use a microarray approach to profile the genes regulated between E7.5 and E8.5 embryonic day in the ETV2+FLK1+CD41- compartment. Cells were sorted based on ETV2::GFP+/FLK1+/CD41- immunophenotype from ETV2::GFP embryos at E7.5 and E8.5 developmental stage in triplicates
Project description:Mature endothelial cells (ECs) are heterogeneous, with subtypes defined by tissue origin and by position within the vascular bed. Here, we performed scRNA-seq with mouse embryonic ECs and identified 19 subclusters, including Etv2+Bnip3+ early EC progenitors. Most of these subtypes were grouped by their vascular-bed types, while ECs from brain, heart and liver were grouped by their tissue origins. Compared to arterial ECs (aECs), embryonic venous (vECs) and capillary ECs (cECs) shared less markers with their adult counterparts. cECs showed some venous characteristics. One cEC cluster with both venous and capillary features served as a branch point for aEC and vEC lineages. aECs and vECs showed distinct transcriptional regulatory networks.
Project description:The mesothelium forms epithelial membranes that line the bodies cavities and surround the internal organs. Mesothelia widely contribute to organ homeostasis and regeneration, and their dysregulation can result in congenital anomalies of the viscera, ventral wall defects, and mesothelioma tumors. Nonetheless, the embryonic ontogeny and developmental regulation of mesothelium formation has remained uncharted. Here, we combine genetic lineage tracing, in toto live imaging, and single-cell transcriptomics in zebrafish to track mesothelial progenitor origins from the lateral plate mesoderm (LPM). Our single-cell analysis uncovers a post-gastrulation gene expression signature centered on hand2 that delineates distinct progenitor populations within the forming LPM. Combining gene expression analysis and imaging of transgenic reporter zebrafish embryos, we chart the origin of mesothelial progenitors to the lateral-most, hand2-expressing LPM and confirm evolutionary conservation in mouse. Our time-lapse imaging of transgenic hand2 reporter embryos captures zebrafish mesothelium formation, documenting the coordinated cell movements that form pericardium and visceral and parietal peritoneum. We establish that the primordial germ cells migrate associated with the forming mesothelium as ventral migration boundary. Functionally, hand2 mutants fail to close the ventral mesothelium due to perturbed migration of mesothelium progenitors. Analyzing mouse and human mesothelioma tumors hypothesized to emerge from transformed mesothelium, we find de novo expression of LPM-associated transcription factors, and in particular of Hand2, indicating the re-initiation of a developmental transcriptional program in mesothelioma. Taken together, our work outlines a genetic and developmental signature of mesothelial origins centered around Hand2, contributing to our understanding of mesothelial pathologies and mesothelioma.