SREBF1 coordinates with master transcription factors in regulating lipid metabolism and cancer-promoting pathways in squamous cell carcinoma
Ontology highlight
ABSTRACT: We profiled esophageal squamous cell carcinorma (ESCC) cell lines with chromatin immunoprecipitation sequencing (ChIP-Seq). Mathematically modeling was performed to establish (super)-enhancers landscapes and inter-connected transcriptional circuitry formed by master TFs. Coregulation and cooperation between master TFs was investigated by ChIP-Seq, RNASeq, 4C-Seq and luciferase assay. Biological functions of candidate factors were evaluated by measuring cell proliferation, colony formation, cell apoptosis and xenograft growth. Next-generation sequencing (NGS) has revolutionized systems-based analysis of cellular pathways. Here, we aim to compare of ESCC cells knock down SREBF1 with siRNA and negative control transcriptome profiling (RNA-seq) to microarray and quantitative reverse transcription polymerase chain reaction (qRT–PCR) methods and to evaluate protocols for optimal high-throughput data analysis. We also report the application of circular chromatin conformation capture (4C) sequencing technology for studying master transcription factor (SREBF1) in human ESCC cancer cell lines (TE5).
ORGANISM(S): Homo sapiens
PROVIDER: GSE143803 | GEO | 2020/06/15
REPOSITORIES: GEO
ACCESS DATA