Transcriptomics

Dataset Information

0

Gender-specific gene repression of PPAR-alpha KO mice in liver and heart


ABSTRACT: Most metabolic studies are conducted in male animals; thus, the molecular mechanism controlling gender-specific pathways has been neglected, including sex-dependent responses to peroxisome proliferator-activated receptors (PPARs). Here we show that PPARalpha has broad female-dependent repressive actions on hepatic genes involved in steroid metabolism and inflammation. In males, this effect is reproduced by the administration of synthetic PPARalpha ligand. Using the steroid hydroxylase gene Cyp7b1 as a model, we elucidated the molecular mechanism of this PPARalpha-dependent repression. Initial sumoylation of the ligand-binding domain of PPARalpha triggers the interaction of PPARalpha with the GA-binding protein alpha bound to the target promoter. Histone deacetylase is then recruited, and histones and adjacent Sp1-binding site are methylated. These events result in the loss of Sp1-stimulated expression, and thus the down-regulation of Cyp7b1. Physiologically, this repression confers protection against estrogen-induced intrahepatic cholestasis, paving the way for a novel therapy against the most common hepatic disease during pregnancy. Keywords: Genetic modification

ORGANISM(S): Mus musculus

PROVIDER: GSE14395 | GEO | 2009/09/11

SECONDARY ACCESSION(S): PRJNA111369

REPOSITORIES: GEO

Shared Molecules

Only show the datasets with similarity scores above: 0.5
     

Similar Datasets

2009-11-16 | E-GEOD-14395 | biostudies-arrayexpress
2010-06-15 | GSE20513 | GEO
2008-06-16 | E-GEOD-8316 | biostudies-arrayexpress
2007-07-24 | GSE8316 | GEO
2010-06-14 | E-GEOD-20513 | biostudies-arrayexpress
2022-02-28 | MTBLS2131 | MetaboLights
2012-01-31 | E-GEOD-35262 | biostudies-arrayexpress
2008-08-06 | GSE12337 | GEO
2011-10-17 | E-GEOD-33044 | biostudies-arrayexpress
2011-10-18 | GSE33044 | GEO