RNA sequencing analysis of pig neonatal left ventricular tissues
Ontology highlight
ABSTRACT: The goal of this study is to examine transcriptomic changes in the left ventricles during the transition from a regenerative to a non-regenerative state in the pig neonatal heart. RNA was isolated from pig left ventricular tissue at postnatal day (P)0, P7, and P15, to compare the regeneration-capable P0 cardiac transcriptomic environment to the non-regenerative timepoints of P7 and P15, in pig hearts.
Project description:This experiment captures the expression data obtained from mouse cerebellar granule neurons (CGN) at different time points of post-natal development, both in wild type samples (P0, P7, and P15) and in CGN electroporated with vectors expressing transcription factors Zeb1 and Hes1 (both P7).
Project description:Little is known about the expression patterns and functions of circular RNAs (circRNAs) in the heart of large mammals. In this study, we examined the expression profiles of circRNAs, microRNAs (miRNAs), and messenger RNAs (mRNAs) in neonatal pig hearts. Pig heart samples collected on postnatal days 1 (P1), 3 (P3), 7 (P7) and 28 (P28) were sent for total RNA sequencing. Our data revealed a total of 7000 circRNAs in the 24 pig hearts. Pathway enrichment analysis of hallmark gene sets demonstrated that differentially expressed circRNAs are engaged in different pathways. The most significant difference was observed between P1 and the other three groups (P3, P7 and P28) in pathways related to cell cycle and muscle development. Out of the ten circRNAs that were validated through real-time quantitative polymerase chain reaction (qRT-PCR) to confirm their expression, six exhibited significant effects on cell cycle activity in human induced pluripotent stem cells-derived cardiomyocytes (hiPSC-CMs) following small interfering RNA-mediated knockdown. The circRNA-miRNA-mRNA networks were constructed to understand the potential mechanisms of circRNAs in the heart. In conclusion, our study provided a dataset for exploring the roles of circRNAs in pig hearts. In addition, we identified several circRNAs that regulate cardiomyocyte cell cycle.
Project description:Dexamethasone (1ug/g, Dex) or vehicle (saline) injected into postnatal days 0-7 (P0 to P7) of C57BL6J mouse pups every day. Whole organ were harvested at P7.
Project description:Myocardial infarction (MI) is the leading cause for hear failure (HF). Following MI, the non-infarcted region of left ventricle (LV) is critical for maintaining heart function, and disruption of the LV contributes greatly to post-MI HF. Transcriptomic profiling by high-throughput sequencing was performed in a chronic HF pig model, to explore the molecular changes in the post-MI LV related to cardiovascular deterioration. Samples were taken from heart tissue of MI-induced pigs and from control pigs not subjected to MI. Regions of the heart where samples were taken included the site of ischemia (LV ischemia), area bordering ischemia (LV border), area remote to ischemia (LV remote) and the right ventricle (RV).
Project description:Genome integration-free pig induced pluripotent stem cells (iPSCs) bring tremendous value in preclinical testing of regenerative medicine, as well as conservation and exploitation of endangered or rare local pig idioplasmatic resources. However, due to a lack of appropriate culture medium, efficient induction and stable maintenance of pig iPSCs with practical value remains challenging. Here, we established an efficient induction system for exogenous gene-independent iPSCs under WNT-inhibited condition previously used for generation of stable pig pre-gastrulation epiblast stem cell lines (pgEpiSCs). WNT suppression was found to play an essential role in establishment of exogenous gene-independent iPSCs. Strikingly, stable integration-free pig iPSCs could be reprogrammed from pig somatic cells using episomal vectors in this cultured condition. The iPSCs had pluripotency features and transcriptome characteristics approximating pgEpiSCs. More importantly, this induction system may be used to generate integration-free iPSCs from elderly disabled rare local pig somatic cells, and the iPSCs could be gene-edited and used as donor cells for nuclear transfer. Our results provide novel insights into potential applications for genetic breeding of livestock species and pre-clinical evaluation of regenerative medicine.
Project description:Genome-wide transcriptomic analyses in left ventricles (LVs) from systemic MIAT knockout (KO) mice were performed to identify novel MIAT targets in the heart.
Project description:Pharmacological and gene ablation studies have demonstrated a crucial role of the caridac natriuretic peptides (NP) hormones ANF and BNP in the maintenance of cardiovascular homeostasis. Considerable effort has been focused on the elucidation of the mechanistic underlying increased atrial ANF and BNP expression and secretion. These investigations are important because under chronic congestive heart failure, the secretion of NPs although increased and beneficial, is relatively insufficient as demonstrated by the fact that patients benefit form the unloading of the heart induced by therapeutic administration of either ANF or BNP. To identify genes involved in the transcriptional response of the endocrine heart under normal and stimulated states, we conducted differential gene expression studies of the rat atria and ventricles under normal or chronic volume overload, induced by aorto-caval shunt. The left atrial appendages and left ventricular free walls were obtained from 28 day sham and shunt operated male Sprague Dawley rats. Total RNA was obtained from three pools (of two tissues) of left atria and left ventricles under sham and shunt conditions. Three biological replicates for each muscle type and condition were generated.
Project description:This research aimed to identify protein biomarkers of right ventricular dysfunction in patients with advanced heart failure with reduced ejection fraction (HFrEF). Samples of myocardium from both, right and left ventricles (RV, LV) were obtained from 10 HFrEF patients with right ventricular dysfunction (RVD), 10 HFrEF patients without RVD (noRVD) undergoing heart transplantation, and 10 non-failing unused donor hearts (Control). Tissue samples were homogenized and extracted using mild Triton X-100 detergent and processed by SP3 extraction to remove the detergent prior the analysis, (LFQ) proteomic analysis identified a total of 4 032 proteins in the left ventricle and 3 788 proteins in the right ventricle.
Project description:We analyzed time dependent global proteomic adaptations during heart failure (HF) progression in a mouse model, suffering from left ventricular pressure overload due to transverse aortic constriction (TAC), to gain deeper insights in the disease development and identify new biomarker candidates. The hearts from TAC and sham mice were examined by cardiac MRI on either day 4, 14, 21, 28, 42, and 56 after surgery (n=6 group/time point). At each time point, proteomes of the left (LV) and right ventricles (RV) of TAC and sham mice were analyzed by mass spectrometry (MS).