Project description:The goal of this study was to identify potential genes regulated by ERG Experiment Overall Design: 293HEK cells were transiently transfected in duplicate with CMV-Tg2B ERG or control vector independently for a total of 4 samples.
Project description:Jurkat cells infected with pMIN-ERG+85 express different tagBFP levels. Using flow cytometry sorting, highest and lowest tagBFP cells (10%) were sorted. High tagBFP cells are functionaly have more leukemia stem cell proprties in comparision to low tagBFP cells. Utilizing sorted cells to identifiy differential transcriptomics between two subpopulations We used microarrays to detail the global programme of gene expression underlying cellularisation and identified distinct classes of up/down-regulated genes that determine High tagBFP cells vs Low tagBFP
Project description:ERG (Ets Related Gene) is an ETS transcription factor that was originally described for its role in a number of human cancers. Our preliminary data demonstrate that ERG exhibits a highly EC restricted pattern of expression in cultured primary cells and several adult tissues including the heart, lung, and brain. In response to inflammatory stimuli, such as TNF-alpha, we observed a marked reduction of ERG expression in EC. To further define the role of ERG in the regulation of normal EC function we used RNA interference to knockdown ERG. Knockdown of ERG in human umbilical vein EC (HUVEC) using siRNA was associated with the reduction of a number known ERG targets. Keywords: SIRNA Functional Role
Project description:The goal of this project was to analyze the global gene expression profiles of RWPE1 and VCAP cells following transfection of GFP, GFP-ERG at 48 and 72hrs time points and stable ERG shRNA, scramble shRNA, respectively.
Project description:ERG overexpression is the most frequent molecular alteration in prostate cancer. We analyzed different stages of prostate cancer to identify genes that were coexpressed with ERG overexpression. In primary prostate tumors, it was shown that TDRD1 expression was the strongest correlated gene with ERG overexpression and we suggest TDRD1 as a direct ERG target gene.
Project description:ERG has been identified as an essential factor for the function and maintenance of adult hematopoietic stem cells and high ERG expression is a negative prognostic marker for treatment outcome in AML. The molecular function of ERG and its interplay with other factors is however largely unknown. Here we demonstrate that ERG has cell type specific distributions in normal CD34+ myeloid progenitors and in AML cells and identify ERG as a potential pioneering protein for binding of oncofusion protein complexes. In addition, we identify H3 acetylation as the epigenetic mark preferentially associated with ERG binding. This intimate connection between ERG binding and H3 acetylation implies that one of the molecular strategies of the oncofusion proteins PML-RARa and AML1-ETO could involve the targeting of histone deacetylase activities to ETS factor bound hematopoietic regulatory sites.
Project description:The goal of this project was to analyze the global gene expression profiles of RWPE1 and VCAP cells following transfection of GFP, GFP-ERG at 48 and 72hrs time points and stable ERG shRNA, scramble shRNA, respectively. RWPE1 cells were transfected with GFP or GFP-ERG. VCAP cells were transfected with ERG lenti-shRNA or scramble shRNA. Transfections were performed in duplicate. Total cellular RNA was isolated with Trizol and quality analysed by the bioanalyser kit.
Project description:ERG overexpression is the most frequent molecular alteration in prostate cancer. We analyzed different stages of prostate cancer to identify genes that were coexpressed with ERG overexpression. In primary prostate tumors, it was shown that TDRD1 expression was the strongest correlated gene with ERG overexpression and we suggest TDRD1 as a direct ERG target gene.
Project description:ERG has been identified as an essential factor for the function and maintenance of adult hematopoietic stem cells and high ERG expression is a negative prognostic marker for treatment outcome in AML. The molecular function of ERG and its interplay with other factors is however largely unknown. Here we demonstrate that ERG has cell type specific distributions in normal CD34+ myeloid progenitors and in AML cells and identify ERG as a potential pioneering protein for binding of oncofusion protein complexes. In addition, we identify H3 acetylation as the epigenetic mark preferentially associated with ERG binding. This intimate connection between ERG binding and H3 acetylation implies that one of the molecular strategies of the oncofusion proteins PML-RARa and AML1-ETO could involve the targeting of histone deacetylase activities to ETS factor bound hematopoietic regulatory sites. Examination of AML1-ETO, RUNX1, CBFb, HEB, FLI1 and ERG binding sites (ChIP-seq) in leukemic and normal hematopoietic cells, association with chromatin modifications and expression (RNA-seq) analysis of an AML1-ETO expressing cell line (SKNO-1)
Project description:The Ets transcription factor, ERG, plays a central role in definitive hematopoiesis and its overexpression in acute myeloid leukemia is associated with a stem cell signature and bad prognosis. However, little is known about the underlying mechanism by which ERG causes leukemia. Therefore we sought to identify ERG targets that participate in development of leukemia by integration of expression arrays and Chromatin immunoprecipitation.