Transcriptomics

Dataset Information

0

Molecular plant responses to combined abiotic stresses put a spotlight on unknown and abundant genes


ABSTRACT: Environmental stresses such as drought, heat and salinity limit plant development and agricultural productivity. While individual stresses have been studied extensively, much less is known about the molecular interaction of responses to multiple stresses. To address this problem, we investigated molecular responses of Arabidopsis thaliana to single, double, and triple combinations of salt, osmotic, and heat stresses. A metabolite profiling analysis indicated the production of specific compatible solutes depending on the nature of the stress applied. We found that in combination with other stresses, heat has a dominant effect on global gene expression and metabolites level patterns. Treatments that include heat stress lead to strongly reduced transcription of genes coding for abundant photosynthetic proteins and proteins regulating the cell life cycle, while genes involved in protein degradation are upregulated. Under combined stress conditions, the plants shifted their metabolism to a survival state characterized by low productivity. Our work provides molecular evidence for the dangers for plant productivity and future world food security posed by heat waves resulting from global warming. We highlight candidate genes, many of which are functionally uncharacterized, for engineering plant abiotic stress tolerance.

ORGANISM(S): Arabidopsis thaliana

PROVIDER: GSE146206 | GEO | 2020/05/25

REPOSITORIES: GEO

Dataset's files

Source:
Action DRS
Other
Items per page:
1 - 1 of 1

Similar Datasets

2024-06-30 | GSE228589 | GEO
2020-10-02 | GSE136383 | GEO
2021-09-01 | GSE152620 | GEO
2023-03-11 | PXD034419 | Pride
2019-04-01 | GSE112161 | GEO
2017-06-01 | GSE83136 | GEO
2024-04-30 | PXD041759 | Pride
2014-03-05 | E-GEOD-39956 | biostudies-arrayexpress
2019-01-03 | GSE79522 | GEO
2015-10-01 | GSE71680 | GEO