Project description:Genome-wide analysis of Smc distribution using ChIP-on-chip ChIP DNA versus Input DNA Keywords: ChIP-chip Combined ChIP and Input DNA from three independent experiments on single array
Project description:Structural maintenance of chromosomes (SMC) complexes shape the genomes of virtually all organisms but how they function remains incompletely understood. Recent studies in bacteria and eukaryotes have led to a unifying model in which these ring-shaped ATPases act along contiguous DNA segments processively enlarging DNA loops. In support of this model, single-molecule imaging experiments indicate that Saccharomyces cerevisiae condensin complexes can extrude DNA loops in an ATP hydrolysis dependent manner in vitro. Here, using time-resolved high-throughput chromosome conformation capture (Hi-C) we investigate the interplay between ATPase activity of the Bacillus subtilis SMC complex and loop formation in vivo. We show that point mutants in the SMC nucleotide binding domain that impair but do not eliminate ATPase activity not only exhibit delays in de novo loop formation but also have reduced rates of processive loop enlargement. These data provide in vivo evidence that SMC complexes function as loop extruders.
Project description:SMC complexes are widely conserved ATP-powered loop extrusion motors indispensable for the faithful segregation of chromosomes during cell division. How SMC complexes translocate along DNA for loop extrusion and what happens when two complexes meet on the same DNA molecule is largely unknown. Revealing the origins and the consequences of SMC encounters is crucial for understanding the folding process not only of bacterial, but also of eukaryotic chromosomes. Here, we uncover several factors that influence bacterial chromosome organization by modulating the probability of such clashes. These factors include the number, the strength and the distribution of Smc loading sites, the residence time on the chromosome, the translocation rate, and the cellular abundance of Smc complexes. By studying various mutants, we show that these parameters are fine-tuned to reduce the frequency of encounters between Smc complexes, presumably as a risk mitigation strategy. Mild perturbations hamper chromosome organization by causing Smc collisions, implying that the cellular capacity to resolve them is rather limited. Altogether, we identify mechanisms that help to avoid Smc collisions and their resolution by Smc traversal or other potentially risky molecular transactions.
Project description:Structural maintenance of chromosomes (SMC) complexes play critical roles in chromosome dynamics in virtually all organisms but how they function remains poorly understood. In Bacillus subtilis, SMC condensin complexes are topologically loaded at centromeric sites adjacent to the replication origin. Here we provide evidence that these ring-shaped assemblies tether the left and right chromosome arms together while traveling from the origin to the terminus (>2 Mb) at rates >50kb/min. Condensin movement scales linearly with time arguing for an active transport mechanism. These data support a model in which SMC complexes function by processively enlarging DNA loops. Loop formation followed by processive enlargement provides a mechanism for how condensin complexes compact and resolve sister chromatids in mitosis and how cohesin generates topologically associating domains (TADs) during interphase.
Project description:We monitored changes in Bacillus subtilis global gene expression in response to deletion or disruption of smc or ftsY. Keywords: genetic modification
Project description:Identification of the specific WalR (YycF) binding regions on the B. subtilis chromosome during exponential and phosphate starvation growth phases. The data serves to extend the WalRK regulon in Bacillus subtilis and its role in cell wall metabolism, as well as implying a role in several other cellular processes. For each sample analyzed in this study three biological replicates were performed. Three different samples were taken from a strain expressing the WalR-SPA protein as well as from wild-type (168) without a tagged WalR. Samples were taken from exponentially growing cells in low phosphate medium (LPDM) as well as from phosphate-limited cells (T2). Each sample compares ChIP DNA vs. Total DNA from the same cells.
Project description:SMC complexes, loaded at ParB-parS sites, are key mediators of chromosome organization in bacteria. ParA/Soj proteins interact with ParB/Spo0J in a pathway involving ATP-dependent dimerization and DNA binding, leading to chromosome segregation and SMC loading. In Bacillus subtilis, ParA/Soj also regulates DNA replication initiation, and along with ParB/Spo0J is involved in cell cycle changes during endospore formation. The first morphological stage in sporulation is the formation of an elongated chromosome structure called an axial filament. We now show that a major redistribution of SMC complexes drives axial filament formation, in a process regulated by ParA/Soj. Unexpectedly, this regulation is dependent on monomeric forms of ParA/Soj that cannot bind DNA or hydrolyse ATP. These results reveal a new role for ParA/Soj proteins in the regulation of SMC dynamics in bacteria, and yet further complexity in the web of interactions involving chromosome replication, segregation, and organization, controlled by ParAB and SMC.
Project description:SMC and MukB complexes consist of a central SMC dimer and two essential binding partners, ScpA and ScpB (MukE and MukF), and are crucial for correct chromosome compaction and segregation. The complexes form two bipolar assemblies on the chromosome, one in each cell half. Using fluorescence recovery after photobleaching (FRAP), we provide evidence that the SMC complex has high exchange rates. This depends to a considerable degree on de novo protein synthesis, revealing that the bacterial SMC complex has high on and off rates for binding to the chromosome. A mutation in SMC that affects ATPase activity and results in exaggerated DNA binding in vitro causes a strong segregation defect in vivo and affects the localization of the entire SMC complex, which localizes to many more sites in the cell than under normal conditions. These data indicate that ATP turnover is important for the function of Bacillus subtilis SMC. In contrast, the centromere protein Spo0J and DNA gyrase showed much less exchange between distinct binding sites on the chromosome than that seen with SMC. Binding of Spo0J to the origin regions was rather static and remained partially conserved until the next cell cycle. Our experiments reveal that the SMC complex has a high, condensin-like turnover rate and that an alteration of the ATPase cycle affects SMC function in vivo, while several nucleoid-associated proteins feature limited or slow exchange between different sites on the nucleoid, which may be the basis for epigenetic-like phenomena observed in bacteria.
Project description:We studied the binding of SMC protein to Streptomyces venezuelae chromosome during development of aerial hyphae (14 hour of growth) using SMC-FLAG protein. Additionally investigated the role of ParB protein in SMC DNA binding using parB deletion strain.