Single Cell Sequencing Reveals Early PGC-like Intermediates During Mouse Primed to Naïve Transition
Ontology highlight
ABSTRACT: Single cell analysis provides clarity unattainable with bulk approaches. Here we apply single cell RNA-seq to a newly established BMP4 induced mouse primed to naive transition (Bi-PNT) system and show that the reset is not a direct reversal of cell fate but through developmental intermediates. We first show that mEpiSCs bifurcate into c-Kit+ naïve and c-Kit- placenta-like cells, among which, the naive branch undergoes further transition through a primordial germ cell-like cells (PGCLCs) intermediate capable of spermatogenesis in vivo. Indeed, deficiency of Prdm1/Blimp1, the key regulator for PGC specification, blocks the induction of PGCLCs and naïve cells. Instead, Gata2 knockout arrests placenta-like fate, but facilitates the generation of PGCLCs. Our results not only reveal a newly cell fate dynamics between primed and naive states at single-cell resolution, but also provide a model system to explore mechanisms involved in regaining germline competence from primed pluripotency.
ORGANISM(S): Mus musculus
PROVIDER: GSE147088 | GEO | 2021/03/09
REPOSITORIES: GEO
ACCESS DATA