Identification of A Drug Blocking SARS-CoV-2 Infection using Human Pluripotent Stem Cell-derived Colon Organoids
Ontology highlight
ABSTRACT: The current COVID-19 pandemic is caused by the novel coronavirus SARS-coronavirus 2 (SARS-CoV-2). There are currently no therapeutic options for mitigating this disease due to lack of a vaccine and limited knowledge of SARS-CoV-2 virus biology. As a result, there is an urgent need to create new disease models to study SARS-CoV-2 biology and to screen for therapeutics using human disease-relevant tissues. COVID-19 patients often present with respiratory symptoms including cough, dyspnea, and respiratory distress but upwards of 25% of respiratory dysfunction, many COVID-19 patients have digestive system indications, including anorexia, diarrhea, vomiting, and abdominal pain. Moreover, these symptoms are associated with more severe COVID-19 outcomes1. Here, we report using human pluripotent stem cell-derived colonic organoids (hPSC-COs) to explore the permissiveness of different colonic cell types to SARS-CoV-2 infection. Single cell RNA-seq and immunostaining showed that the putative viral entry receptor ACE2 is expressed in multiple types of hESC-derived colon cells, but are highly enriched in hPSC-derivedKRT20+ enterocytes. Distinct cell types in the COs can be infected by a SARS-CoV-2 pseudo-entry virus, which is further validated in vivo using a humanized mouse model. Finally, we adapted hPSC-derived COs to a high throughput platform to screen 1280 FDA-approved drugs. Mycophenolic acid was found to block the entry of SARS-Cov-2 pseudo-entry virus in COs, and confirmed to block infection of SARS-CoV-2 virus. In summary, this study established both in vitro and in vivo organoid models to investigate infection of SARS-CoV-2 disease-relevant human colonic cell types and identified a drug suitable for rapid clinical testing that blocks SARS-CoV-2 infection.
Project description:The SARS-CoV-2 has already caused over twelve million COVID-19 cases and half a million deaths worldwide. There is an urgent need to create novel models using human disease-relevant cells to study SARS-CoV-2 biology and to facilitate drug screening. As SARS-CoV-2 primarily infects the respiratory tract, we developed a lung organoid model using human pluripotent stem cells (hPSC-LOs) that could be adapted for drug screening. The hPSC-LOs, particularly alveolar type II-like cells, express the viral entry receptor ACE2, are permissive to SARS-CoV-2 infection, and showed robust induction of chemokines and cytokines upon SARS-CoV-2 infection, similar to what is seen in COVID-19 patients. Nearly 25% of these patients have gastrointestinal manifestations, which are associated with worse COVID-19 outcomes1. We therefore also generated complementary hPSC-derived colonic organoids (hPSC-COs) to explore the response of colonic cells to SARS-CoV-2 infection. We found that multiple colonic cell types, especially enterocytes, express ACE2 and are permissive to SARS-CoV-2 infection. Using hPSC-LOs, we performed a high throughput screen of FDA-approved drugs and identified entry inhibitors of SARS-CoV-2, including imatinib, mycophenolic acid (MPA), and quinacrine dihydrochloride (QNHC). Pre- or post-infection treatment at physiologically relevant levels of these drugs significantly inhibited SARS-CoV-2 infection of both hPSC-LOs and hPSC-COs. Together, these data demonstrate that hPSC-LOs and hPSC-COs infected by SARS-CoV-2 can serve as disease models to study SARS-CoV-2 infection and provide a valuable resource for drug screening to identify candidate COVID-19 therapeutics.
Project description:COVID-19 patients commonly present with neurological signs of central nervous system (CNS) and/or peripheral nervous system dysfunction. However, which neural cells are permissive to infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been controversial. Here, we show that midbrain dopamine (DA) neurons derived from human pluripotent stem cells (hPSCs) are selectively susceptible and permissive to SARS-CoV-2 infection, and that SARS-CoV-2 infection triggers a DA neuron inflammatory and cellular senescence response. A high-throughput screen in hPSC-derived DA neurons identified several FDA approved drugs, including riluzole, metformin, and imatinib, that can rescue the cellular senescence phenotype by preventing SARS-CoV-2 infection. RNA-seq analysis of human ventral midbrain tissue from COVID-19 patients, using formalin-fixed paraffin-embedded autopsy samples, confirmed the induction of an inflammatory and cellular senescence signature and identified low levels of SARS-CoV-2 transcripts. Our findings demonstrate that hPSC-derived DA neurons can serve as a disease model to study neuronal susceptibility to SARS-CoV-2 and to identify candidate neuroprotective drugs for COVID-19 patients. The susceptibility of hPSC-derived DA neurons to SARS-CoV-2 and the observed inflammatory and senescence transcriptional responses suggest the need for careful, long-term monitoring of neurological problems in COVID-19 patients.
Project description:SARS-CoV-2 infects host cells via an ACE2/TMPRSS2 entry mechanism. Monocytes and macrophages, which play a key role during severe COVID-19 express only low or no ACE2, suggesting alternative entry mechanisms in these cells. In silico analyses predicted GRP78, which is constitutively expressed on monocytes and macrophages, to be a potential candidate receptor for SARS-CoV-2 virus entry. To confirm the hypothesis, we conducted high-throughput RNA sequence to characterize the role of GRP78 in monocytes function in COVID-19 patients
Project description:In recent months, Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread throughout the world. COVID-19 patients show mild, moderate or severe symptoms with the latter ones requiring access to specialized intensive care. SARS-CoV-2 infections, pathogenesis and progression have not been clearly elucidated yet, thus forcing the development of many complementary approaches to identify candidate cellular pathways involved in disease progression. Host lipids play a critical role in the virus life, being the double-membrane vesicles a key factor in coronavirus replication. Moreover, lipid biogenesis pathways affect receptor-mediated virus entry at the endosomal cell surface and modulate virus propagation. In this study, targeted lipidomic analysis coupled with proinflammatory cytokines and alarmins measurement were carried out in serum of COVID-19 patients characterized by different severity degree. Serum IL-26, a cytokine involved in IL-17 pathway, TSLP and adiponectin were measured and correlated to lipid COVID-19 patient profiles. These results could be important for the classification of the COVID-19 disease and the identification of therapeutic targets.
Project description:The SARS-CoV-2 virus has already caused over a million COVID-19 cases and over fifty-thousand deaths globally. There is an urgent need to create novel models to study SARS-CoV-2 virus using human disease-relevant cells and tissues to understand key features of virus biology. We present a platform comprised of nine different cell and organoid derivatives from human pluripotent stem cells (hPSCs) representing all three primary germ layers, including lung progenitors and alveolar type II (AT2) cells, pancreatic endocrine cells, liver organoids, endothelial cells, cardiomyocytes, macrophages, microglia, and both cortical and dopaminergic neurons. We systematically probed which cell types are permissive to SARS-CoV-2 infection. Human pancreatic beta cells and hepatocytes were strikingly permissive to SARS-CoV-2 infection, further validated using adult primary human islets and liver organoids. Both in vitro and in a humanized mouse model, human lung progenitors and AT2 cells express the ACE2 viral receptor and were highly permissive to SARS-CoV-2 infection. Transcriptomic analysis following SARS-CoV-2 infection of hPSC-derived pancreatic and lung organoids revealed upregulation of chemokines but not type I/III interferon signaling, similar to what was seen in primary human COVID-19 pulmonary infection. Therefore, hPSC-derived cells phenocopy human COVID-19 disease and provide a valuable resource to understand SARS-CoV-2 biology and search for novel therapeutics.
Project description:The ongoing COVID-19 pandemic caused by SARS-CoV-2 has affected millions of people worldwide and has significant implications for public health. Host transcriptomics profiling provides comprehensive understanding of how the virus interacts with host cells and how the host responds to the virus. COVID-19 disease alters the host transcriptome, affecting cellular pathways and key molecular functions. To contribute to the global effort to understand the virus’s effect on host cell transcriptome, we have generated a dataset from nasopharyngeal swabs of 35 individuals infected with SARS-CoV-2 from the Campania region in Italy during the three outbreaks, with different clinical conditions. This dataset will help to elucidate the complex interactions among genes and can be useful in the development of effective therapeutic pathways
Project description:Coronavirus disease 2019 (COVID-19) is a global pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). COVID-19 patients accompany with high frequencies of cardiac complications, which prominently contributed to the overall SARS-CoV-2-caused mortality. SARS-CoV-2 genome was reported to encode up to 14 genes. Currently, molecular mechanisms underlying SARS-CoV-2 viral gene-induced cardiac manifestations still remain elusive. Here, we overexpressed Orf9c, a SARS-CoV-2 encoded gene, in human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs). Multiple genome-wide analyses were performed to investigate the global impacts of Orf9c on hPSC-CMs. The mRNA-seq indicated stress-related signaling pathways, including cell death, immune and inflammation responses, activated by Orf9c. High-throughput proteomics and Co-immunoprecipitation mass spectrometry studies revealed the global influence of Orf9c on the proteome of hPSC-CMs and Orf9c-interactive protein network in hPSC-CMs. Orf9c overexpression elevated protein expressions of key factors essential for apoptosis while suppressing protein factors crucial for ATP synthesis. Further experimental validations confirmed that Orf9c overexpression induced prominent cell death, abnormal calcium handling and electrical properties, and significantly reduced cellular ATP level in hPSC-CMs. Finally, administration of two FDA-approved drugs, Ivermectin and Meclizine, were proven by our study to restore ATP level to prominently ameliorate Orf9c-induced cell death and electrical abnormalities of hPSC-CMs. Overall, we comprehensively manifest global responses of host human heart muscle cells to SARS-CoV-2 gene Orf9c, characterized molecular mechanisms underlying Orf9c-induced cardiac abnormalities, and explored potentially therapeutic approaches to ameliorate cardiac dysfunctions in COVID-19 patients.
Project description:Post-acute sequelae of COVID-19 (PASC) represent an emerging global crisis. However, quantifiable risk-factors for PASC and their biological associations are poorly resolved. We executed a deep multi-omic, longitudinal investigation of 309 COVID-19 patients from initial diagnosis to convalescence (2-3 months later), integrated with clinical data, and patient-reported symptoms. We resolved four PASC-anticipating risk factors at the time of initial COVID-19 diagnosis: type 2 diabetes, SARS-CoV-2 RNAemia, Epstein-Barr virus viremia, and specific autoantibodies. In patients with gastrointestinal PASC, SARS-CoV-2-specific and CMV-specific CD8+ T cells exhibited unique dynamics during recovery from COVID-19. Analysis of symptom-associated immunological signatures revealed coordinated immunity polarization into four endotypes exhibiting divergent acute severity and PASC. We find that immunological associations between PASC factors diminish over time leading to distinct convalescent immune states. Detectability of most PASC factors at COVID-19 diagnosis emphasizes the importance of early disease measurements for understanding emergent chronic conditions and suggests PASC treatment strategies.
Project description:Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, continues to spread around the world with serious cases and deaths. It has also been suggested that different genetic variants in the human genome affect both the susceptibility to infection and severity of disease in COVID-19 patients. Angiotensin-converting enzyme 2 (ACE2) has been identified as a cell surface receptor for SARS-CoV and SARS-CoV-2 entry into cells. The construction of an experimental model system using human iPS cells would enable further studies of the association between viral characteristics and genetic variants. Airway and alveolar epithelial cells are cell types of the lung that express high levels of ACE2 and are suitable for in vitro infection experiments. Here, we show that human iPS cell-derived airway and alveolar epithelial cells are highly susceptible to viral infection of SARS-CoV-2. Using gene knockout with CRISPR-Cas9 in human iPS cells we demonstrate that ACE2 plays an essential role in the airway and alveolar epithelial cell entry of SARS-CoV-2 in vitro. Replication of SARS-CoV-2 was strongly suppressed in ACE2 knockout (KO) lung cells. Our model system based on human iPS cell-derived lung cells may be applied to understand the molecular biology regulating viral respiratory infection leading to potential therapeutic developments for COVID-19 and the prevention of future pandemics.
Project description:The molecular properties of CD8+ T cells that respond to SARS-CoV-2 infection are not fully known. Here, we report on the single-cell transcriptomes of >80,000 virus-reactive CD8+ T cells, obtained using a modified Antigen-Reactive T cell Enrichment (ARTE) assay, from 39 COVID-19 patients and 10 healthy subjects. COVID-19 patients segregated into two groups based on whether the dominant CD8+ T cell response to SARS-CoV-2 was ‘exhausted’ or not. SARS-CoV-2-reactive cells in the exhausted subset were increased in frequency and displayed lesser cytotoxicity and inflammatory features in COVID-19 patients with mild compared to severe illness. In contrast, SARS-CoV-2-reactive cells in the dominant non-exhausted subset from patients with severe disease showed enrichment of transcripts linked to co-stimulation, pro-survival NF-κB signaling, and anti-apoptotic pathways, suggesting the generation of robust CD8+ T cell memory responses in patients with severe COVID-19 illness. CD8+ T cells reactive to influenza and respiratory syncytial virus from healthy subjects displayed polyfunctional features and enhanced glycolysis. Cells with such features were largely absent in SARS-CoV-2-reactive cells from both COVID-19 patients and healthy controls non-exposed to SARS-CoV-2. Overall, our single-cell analysis revealed substantial diversity in the nature of CD8+ T cells responding to SARS-CoV-2.