Project description:The goal of this study is to compare NGS-derived transcriptome profiling (RNA-seq) of alpha-synuclein expressing Sh-SY5Y cells vs. lacZ control protein and find characteristic changes that may be related to alpha-synucleinopathies. Our results showed the enrichments of p53 pathways, DNA damage responses, and cellular senescence. Further studies validated genes involved in such pathways.
Project description:Cultured SH-SY5Y human neuroblastoma cells are used in neurotoxicity assays. These cells express markers of the cholinergic and dopaminergic systems. Acetylcholinesterase (AChE) activity has been reported in these cells. Neurotoxic organophosphate compounds that inhibit AChE, also inhibit butyrylcholinesterase (BChE). We confirmed the presence of AChE in the cell lysate by activity assays, Western blot, and liquid chromatography-tandem mass spectrometry (LC-MS/MS) of immunopurified AChE. A nondenaturing gel stained for AChE activity identified the catalytically active AChE in SH-SY5Y cells as the unstable monomer. We also identified immature BChE in the cell lysate. The concentration of active BChE protein was similar to that of active AChE protein. The rate of substrate hydrolysis by AChE was 10-fold higher than substrate hydrolysis by BChE. The higher rate was due to the 10-fold higher specific activity of AChE over BChE (5000 units/mg for AChE; 500 units/mg for BChE). Neither cholinesterase was secreted. Tryptic peptides of immunopurified AChE and BChE were identified by LC-MS/MS on an Orbitrap Lumos Fusion mass spectrometer. The unfolded protein chaperone, binding immunoglobulin protein BiP/GRP78, was identified in the mass spectral data from all cholinesterase samples, suggesting that BiP was co-extracted with cholinesterase. This suggests that the cytoplasmic cholinesterases are immature forms of AChE and BChE that bind to BiP. It was concluded that SH-SY5Y cells express active AChE and active BChE, but the proteins do not mature to glycosylated tetramers.
Project description:How cellular metabolic activities regulate autophagy and determine the susceptibility to oxidative stress and ultimately cell death in neuronal cells is not well understood. An important example of oxidative stress is 4-hydroxynonenal (HNE), which is a lipid peroxidation product that is formed during oxidative stress, and accumulates in neurodegenerative diseases causing damage. The accumulation of toxic oxidation products such as HNE, is a prevalent feature of neurodegenerative diseases, and can promote organelle and protein damage leading to induction of autophagy. In this study, we used differentiated SH-SY5Y neuroblastoma cells to investigate the mechanisms and regulation of cellular susceptibility to HNE toxicity and the relationship to cellular metabolism. We found that autophagy is immediately stimulated by HNE at a sublethal concentration. Within the same time frame, HNE induces concentration dependent CASP3/caspase 3 activation and cell death. Interestingly, both basal and HNE-activated autophagy, were regulated by glucose metabolism. Inhibition of glucose metabolism by 2-deoxyglucose (2DG), at a concentration that inhibited autophagic flux, further exacerbated CASP3 activation and cell death in response to HNE. Cell death was attenuated by the pan-caspase inhibitor Z-VAD-FMK. Specific inhibition of glycolysis using koningic acid, a GAPDH inhibitor, inhibited autophagic flux and exacerbated HNE-induced cell death similarly to 2DG. The effects of 2DG on autophagy and HNE-induced cell death could not be reversed by addition of mannose, suggesting an ER stress-independent mechanism. 2DG decreased LAMP1 and increased BCL2 levels suggesting that its effects on autophagy may be mediated by more than one mechanism. Furthermore, 2DG decreased cellular ATP, and 2DG and HNE combined treatment decreased mitochondrial membrane potential. We conclude that glucose-dependent autophagy serves as a protective mechanism in response to HNE.
Project description:We recently reported that arsenic disrupted neuronal insulin signaling. Here, we further investigated the effect of arsenic on insulin receptor substrate (IRS) proteins, which are crucial downstream signaling molecules of insulin in differentiated human neuroblastoma SH-SY5Y cells. We also found that prolonged arsenic treatment accelerated the migration of IRS1 and IRS2 on SDS-PAGE. Treatment with phosphatases abolished the arsenic-induced increased mobility of IRS, suggesting that the electrophoretic mobility shift of IRS on SDS-PAGE by arsenic was phosphorylation-dependent. By using label-free mass spectrometry, the phosphorylation sites of IRS1 were found to be S24, S345, S636, T774, S1057, S1058, and S1070, while those of IRS2 were at S645, Y653, T657, S665, S667, S669, S672, S915, and S1203, which were at least 2-fold lower than found in the control. These findings indicated a global hypophosphorylation of IRS proteins after prolonged arsenic treatment. In addition, four novel phosphorylation sites were identified on IRS1 (T774, S1057, S1058, and S1070), with another two on IRS2 (S665 and S667). As basal IRS phosphorylation plays an important role in insulin signaling, the reduction of IRS phosphorylation on multiple residues may underlie arsenic-impaired insulin signaling in neurons.