ABSTRACT: To define the hedgehog-interacting protein (Hhip) expression domain in adult mouse lung, we conduct single-cell RNAseq of the mouse lung using 10X scRNAseq technique.
Project description:To study resident immune cells in Hhip-deleted lungs, we conduct single-cell RNAseq of the resident immune cells from Gli1HhipCKO_Tam and Gli1HhipCKO_Oil_Control mice lungs using 10X genomics scRNAseq technique.
Project description:Chronic obstructive pulmonary disease (COPD) is characterized by persistent and amplified inflammation to cigarette smoke in vulnerable subjects. The genetic risk of persistent inflammation is poorly understood. A mouse model targeting hedgehog interacting protein (HHIP)(Hhip+--), a genetic risk factor for COPD, displays progressive, persistent inflammation resembling human cases, providing a valuable model to study the contribution of the genetic risk factor HHIP to inflammation in COPD. By single cell RNA sequencing of Hhip+-- lungs at different disease stages, we identified induction of IFN-gamma in activated CD8+T cells possibly driving the inflammatory phenotype in Hhip+-- lungs. Hhip expression was restricted to lung fibroblasts, which interaction with CD8+T cells were mediated by increased levels of IL-18 from Hhip+-- fibroblasts. Our finding provides insight into how a common genetic variation contributes to the amplified lymphocytic inflammation in COPD.
Project description:BACKGROUND: The HHIP gene, encoding Hedgehog interacting protein, has been implicated in chronic obstructive pulmonary disease (COPD) by genome-wide association studies (GWAS), and our subsequent studies identified a functional upstream genetic variant that decreased HHIP transcription. However, little is known about how HHIP contributes to COPD pathogenesis. METHODS: Here, we exposed Hhip haploinsufficient mice (Hhip+/-) to cigarette smoke (CS) for 6 months to model the biological consequences caused by CS in human COPD risk-allele carriers at the HHIP locus. Gene expression profiling in murine lungs was performed followed by an integrative network inference analysis, PANDA (Passing Attributes between Networks for Data Assimilation) analysis. RESULTS: We detected more severe airspace enlargement in Hhip+/- mice vs. wild-type littermates (Hhip+/+) exposed to CS. Gene expression profiling in murine lungs suggested enhanced lymphocyte activation pathways in CS-exposed Hhip+/- vs. Hhip+/+ mice, which was supported by increased numbers of lymphoid aggregates and enhanced activation of CD8+ T cells after CS-exposure in the lungs of Hhip+/- mice compared to Hhip+/+ mice. Mechanistically, results from PANDA network analysis suggested a rewired and dampened Klf4 signaling network in Hhip+/- mice after CS exposure. CONCLUSIONS: In summary, HHIP haploinsufficiency exaggerated CS-induced airspace enlargement, which models CS-induced emphysema in human smokers carrying COPD risk alleles at the HHIP locus. Network modeling suggested rewired lymphocyte activation signaling circuits in the HHIP haploinsufficiency state. Total RNA was obtained from the lung tissue of C57BL/6J mice exposed to cigarette smoke (CS) or filtered air (air) for 6 months. Six mice from each of four groups with different genotypes (Hhip+/+ or Hhip+/-) and treatments (air or CS) were randomly chosen for gene expression profiling
Project description:Long non-coding RNAs (lncRNAs) comprise a diverse class of gene expression regulators with emerging roles in many biological processes including cancer. Here we show that the expression of the lncRNA Hedgehog Interacting Protein Antisense 1 (HHIP-AS1) is a hallmark feature of human SHH-driven tumors. Importantly, loss of HHIP-AS1 leads to reduced tumor growth in SHH-driven tumors in vitro and in vivo. Our results demonstrate the power of cross-entity transcriptome-wide comparisons to identify novel epigenetic–regulatory lncRNA circuitries underlying human cancers.
Project description:Medial habenular (mHb) cholinergic neurons that project to the interpeduncular nucleus (IPn) regulate aversive behavioral responses to nicotine that protect against tobacco addiction. Little is known about the nicotine-evoked cellular or molecular adaptations in these neurons that influence the development of the smoking habit. Using in vivo calcium imaging and single-cell RNA sequencing, we show that a dose of nicotine that stimulates mHb neural activity evokes robust transcriptional plasticity in neuronal and non-neuronal cells in the mHb, including upregulated expression of Hedgehog-interacting protein (HHIP) in putative cholinergic neurons. Allelic variation in HHIP confers risk for smoking-related diseases including chronic obstructive pulmonary disease and lung cancer, but underlying mechanisms of action are unclear. Using Translating Ribosome Affinity Purification (TRAP) sequencing and RNAscope, we confirmed that Hhip transcripts are highly enriched in mHb cholinergic neurons. HHIP mutant mice exhibit hundreds of differentially expressed transcripts in the mHb and perturbed transcriptional responses to nicotine. Moreover, acute in vivo CRISPR/Cas9-mediated genomic cleavage of mHb Hhip attenuated noxious responses to nicotine and increased intravenous nicotine self-administration behavior in mice. In vitro knockdown of Hhip reduces intracellular calcium release to nicotine and increases Gli activity. These findings suggest that HHIP acts in the mHb to regulate nicotine intake and that HHIP alleles may increase vulnerability to smoking-related diseases by modulating mHb signaling and enhancing the addictive properties of tobacco.
Project description:BACKGROUND: The HHIP gene, encoding Hedgehog interacting protein, has been implicated in chronic obstructive pulmonary disease (COPD) by genome-wide association studies (GWAS), and our subsequent studies identified a functional upstream genetic variant that decreased HHIP transcription. However, little is known about how HHIP contributes to COPD pathogenesis. METHODS: Here, we exposed Hhip haploinsufficient mice (Hhip+/-) to cigarette smoke (CS) for 6 months to model the biological consequences caused by CS in human COPD risk-allele carriers at the HHIP locus. Gene expression profiling in murine lungs was performed followed by an integrative network inference analysis, PANDA (Passing Attributes between Networks for Data Assimilation) analysis. RESULTS: We detected more severe airspace enlargement in Hhip+/- mice vs. wild-type littermates (Hhip+/+) exposed to CS. Gene expression profiling in murine lungs suggested enhanced lymphocyte activation pathways in CS-exposed Hhip+/- vs. Hhip+/+ mice, which was supported by increased numbers of lymphoid aggregates and enhanced activation of CD8+ T cells after CS-exposure in the lungs of Hhip+/- mice compared to Hhip+/+ mice. Mechanistically, results from PANDA network analysis suggested a rewired and dampened Klf4 signaling network in Hhip+/- mice after CS exposure. CONCLUSIONS: In summary, HHIP haploinsufficiency exaggerated CS-induced airspace enlargement, which models CS-induced emphysema in human smokers carrying COPD risk alleles at the HHIP locus. Network modeling suggested rewired lymphocyte activation signaling circuits in the HHIP haploinsufficiency state.
Project description:In this project we studied the effect of Langat infection (LGTV strain TP21) on the brains of mice, both wild-type and Ifnar-/-. Nuclei of the brain were isolated and subjected to 10x 3' scRNAseq.