Project description:We have developed a new conditional transgenic mouse showing that MLL-ENL, at an endogenous-like expression level, induces leukemic transformation selectively in LT-HSCs. To investigate the molecular mechanism of leukemic transformation in LT-HSCs conditionally expressing MLL-ENL, we preliminarily performed comprehensive gene expression profiling of CreER-transduced LT-HSCs and ST-HSCs using cDNA microarray analysis. For initial screening of candidate genes invloved in the leukemic transformation, total RNA was extracted from colony-forming cells derived from LT-HSCs and ST-HSCs transduced with CreER or mock. Four samples were analyzed, and CreER-transduced LT/ST-HSC-derived cells were compared with mock-transduced LT/ST-HSC-derived cells, while CreER/mock-transduced LT-HSC-derived cells were compared with CreER/mock-transduced ST-HSC-derived cells.
Project description:We have developed a new conditional transgenic mouse showing that MLL-ENL, at an endogenous-like expression level, induces leukemic transformation selectively in LT-HSCs. To investigate the molecular mechanism of leukemic transformation in LT-HSCs conditionally expressing MLL-ENL, we preliminarily performed comprehensive gene expression profiling of CreER-transduced LT-HSCs and ST-HSCs using cDNA microarray analysis.
Project description:To understand the molecular mechanism associated with increased erythroid differentiation upon FAM122A deletion, we performed RNA sequencing to examine the global gene expression profiling of FAM122A KO and NC K562 cells.
Project description:Loss of Phf6 prevents the functional decline and immunophenotypic changes associated with age-related, long-term repopulating hematopoietic stem cell (LT-HSC) exhaustion. To identify the underlying molecular mechanisms that account for these differences, we performed RNA-seq profiling of LT-HSCs isolated from the bone marrow of Phf6 wild-type and knock-out, young (16-week-old) and aged (24-month-old) C57BL/6 mice. Our analysis revealed that LT-HSCs isolated from 24-month-old, Phf6 knockout mice retained the molecular signatures associated with young LT-HSCs whereas LT-HSCs isolated from aged, Phf6 wild-type mice acquired signatures consistent with HSC exhaustion. Mechanistically, these data revealed important roles for key metabolic pathways including glutathione metabolism and sterol biosynthesis, as well as cell-cell interaction and signaling pathways such as the interferon and TGF-beta responses.
Project description:Analysis of HSCs from control and c-myc N-myc deficient long-term hematopoietic stem cells. HSCs lacking both c-myc and N-myc display increased apoptosis rates. Data provide insight into the molecular changes occuring upon complete loss of Myc activity, clarifying the resulting apoptotic mechanism and the role of Myc family proteins in HSCs. LT-HSC (Lin-Sca1+CD150+CD48-) cells were sorted from the BM of MxCre c-myc flox2 N-myc flox2 (experimental) and c-myc flox2 N-myc flox2 (control) mice 3 days after the last pI-pC injection. Each condition was analysed in triplicates, with each replicate consisting of a pool of 3 dKO mice or 2 control mice.