LncRNA data in gastrocnemius muscles from mice that have undergone denervation of the right sciatic nerve or not
Ontology highlight
ABSTRACT: This study was to identify lncRNAs responsible for muscle atrophy Muscle atrophy commonly occurs in aging, disuse, starvation, and many chronic diseases including heart failure and cancer. Muscle atrophy leads to muscular weakness and reduced quality of life, which also significantly increases morbidity and mortality. While progress has been made in understanding the molecular underpinnings of muscle atrophy, currently there are no effective approved drugs to combat muscle atrophy. Thus, novel therapies for muscle atrophy would address an important unmet clinical need. Long non-coding RNAs (LncRNAs) are transcribed RNAs longer than 200 nucleotides with little or no protein-coding capacity. Several lncRNAs have been reported in myogenesis and few lncRNAs have been mechanistically linked to skeletal muscle diseases. Here we want to identify a lncRNA as a common regulator of multitypes of muscle atrophy.
Project description:This study was to identify circRNAs responsible for muscle atrophy. Skeletal muscle wasting is a common clinical feature of many chronic diseases and also occurs in response to acute events. Circular RNAs are covalently closed RNA transcripts that are involved in various physiological and pathological processes. However, the underlying mechanisms of circRNAs implicated in muscle atrophy remains unknown. Global circRNA expression profiling indicated that many circRNAs are involved in the pathophysiological processes of muscle atrophy.
Project description:Skeletal muscle atrophy is a debilitating condition associated with weakness, fatigue, and reduced functional capacity. Nuclear factor-kappaB (NF-κB) transcription factors play a critical role in atrophy. Knockout of genes encoding p50 or the NF-κB co-transactivator, Bcl-3, abolish disuse atrophy and thus they are NF-κB factors required for disuse atrophy. We do not know however, the genes targeted by NF-κB that produce the atrophied phenotype. Here we identify the genes required to produce disuse atrophy using gene expression profiling in wild type compared to Nfkb1 (gene encodes p50) and Bcl-3 deficient mice. There were 185 and 240 genes upregulated in wild type mice due to unloading, that were not upregulated in Nfkb1-/- and Bcl-3-/- mice, respectively, and so these genes were considered direct or indirect targets of p50 and Bcl-3. All of the p50 gene targets were contained in the Bcl-3 gene target list. Most genes were involved with protein degradation, signaling, translation, transcription, and transport. To identify direct targets of p50 and Bcl-3 we performed chromatin immunoprecipitation of selected genes previously shown to have roles in atrophy. Trim63 (MuRF1), Fbxo32 (MAFbx), Ubc, Ctsl, Runx1, Tnfrsf12a (Tweak receptor), and Cxcl10 (IP-10) showed increased Bcl-3 binding to κB sites in unloaded muscle and thus were direct targets of Bcl-3. p50 binding to the same sites on these genes either did not change or increased, supporting the idea of p50:Bcl-3 binding complexes. p65 binding to κB sites showed decreased or no binding to these genes with unloading. Fbxo9, Psma6, Psmc4, Psmg4, Foxo3, Ankrd1 (CARP), and Eif4ebp1 did not show changes in p65, p50, or Bcl-3 binding to κB sites, and so were considered indirect targets of p50 and Bcl-3. This work represents the first study to use a global approach to identify genes required to produce the atrophied phenotype with disuse. 24 mice were used based on 4 mice per group, 3 mouse genotypes (wild type, Nfkb1-/-, Bcl3-/-) and 2 conditions (weight-bearing and unloaded).
Project description:To identify atrophy genes directly targeted by Bcl-3 transactivator at a genome wide level, we performed whole transcript expression array and ChIP-seq for muscles from weight bearing or 5-day hind limb unloaded mice. Genes that showed increased expression with unloading and a Bcl-3 peak in the promoter (from ChIP-seq data) were considered as Bcl-3 direct targets during disuse atrophy. Using ChIP array, we identified 241 direct targets for Bcl-3. Our data describe Bcl-3 as a global regulator both of the proteolysis and the change in energy metabolism that are essential components of muscle atrophy due to disuse. Disuse skeletal muscle atrophy was induced by hind limb unloading. Weight bearing (WB) or 5-day hind limb unloaded (HU) muscles were harvested for total RNA isolation and processed for whole transcript expression profiling. We chose to examine gene expression and Bcl-3 binding from 5-day unloaded muscles because our previous time course study of disuse atrophy suggested that most genes are differentially regulated at this time point, and thus, would best represent the time for Bcl-3 binding to the gene targets of the NF-kB transcriptional network.
Project description:Disuse atrophy is a common clinical phenomenon which significantly impacts muscle function and activities of daily living. In this study, we did expression profiling to identify transcriptional pathways associated with muscle remodeling in a clinical model of disuse. Keywords: Differentiation design
Project description:Myositis is characterised by muscle inflammation and weakness. Although generally thought to be driven by a systemic autoimmune response, increasing evidence suggests that intrinsic changes in the muscle might also contribute to the pathogenesis. Long non-coding RNAs (lncRNAs) are a family of novel genes that regulate gene transcription and translation. To determine the potential role of lncRNAs, we employed next generation sequencing to examine the transcriptome in muscle biopsies obtained from two histologically distinct patient populations, inclusion body myositis (IBM) and anti-Jo-1-associated myositis (Jo-1).
Project description:Innervation of skeletal muscle fibers plays a crucial role in the maintenance of muscle tone and normal functioning, but little is known to date about denervated muscle atrophy and its underlying mechanisms. To this end, we performed RNA sequencing of skeletal muscle from sciatic nerve-excised C57BL/6 and BALB/c mice to investigate the underlying mechanisms of denervated skeletal muscle atrophy.
Project description:A mechanistic understanding of the age-related impairment to skeletal muscle regrowth following disuse atrophy as well as therapies to augment recovery in the aged are currently lacking. Mechanotherapy in the form of cyclic compressive loading has been shown to benefit skeletal muscle under a variety of paradigms, but not during the recovery from disuse in aged muscle. To determine whether mechanotherapy promotes extracellular matrix (ECM) remodeling, a critical aspect of muscle recovery after atrophy, we performed single cell RNA sequencing (scRNA-seq) of gastrocnemius muscle cell populations, stable isotope tracing of intramuscular collagen, and histology of the ECM in adult and aged rats recovering from disuse, with and without mechanotherapy. ECM remodeling-related gene expression in fibro-adipose progenitor cells (FAPs) was absent in aged compared to adult muscle following 7 days of recovery, and instead were enriched in chemoattractant genes. There was a significantly lower expression of genes related to phagocytic activity in aged macrophages during recovery, despite enriched chemokine gene expression of numerous stromal cell populations, including FAPs and endothelial cells. Mechanotherapy reprogrammed the transcriptomes of both FAPs and macrophages in aged muscle recovering from disuse to restore ECM-and phagocytosis-related gene expression, respectively. Stable isotope labeling of intramuscular collagen and histological evaluation confirmed mechanotherapy-mediated remodeling of the ECM in aged muscle recovering from disuse. In summary, our results highlight mechanisms underlying age-related impairments during the recovery from disuse atrophy and promote mechanotherapy as an intervention that reprograms the muscle transcriptional environment more similar to that of adult skeletal muscle.
Project description:AQM shows acute muscle wasting and weakness. Key aspects of AQM include muscle atrophy and myofilament loss. Gene expression profiling, using muscle biopsies from AQM, neurogenic atrophy and normal controls, showed that both myogenic and neurogenic atrophy share induction of myofiber-specific ubiquitin/proteosome pathways while only the AQM shows a specific strong induction of transforming growth factor (TGF)-beta/MAPK pathways.
Project description:Skeletal muscle atrophy is a debilitating condition associated with weakness, fatigue, and reduced functional capacity. Nuclear factor-kappaB (NF-κB) transcription factors play a critical role in atrophy. Knockout of genes encoding p50 or the NF-κB co-transactivator, Bcl-3, abolish disuse atrophy and thus they are NF-κB factors required for disuse atrophy. We do not know however, the genes targeted by NF-κB that produce the atrophied phenotype. Here we identify the genes required to produce disuse atrophy using gene expression profiling in wild type compared to Nfkb1 (gene encodes p50) and Bcl-3 deficient mice. There were 185 and 240 genes upregulated in wild type mice due to unloading, that were not upregulated in Nfkb1-/- and Bcl-3-/- mice, respectively, and so these genes were considered direct or indirect targets of p50 and Bcl-3. All of the p50 gene targets were contained in the Bcl-3 gene target list. Most genes were involved with protein degradation, signaling, translation, transcription, and transport. To identify direct targets of p50 and Bcl-3 we performed chromatin immunoprecipitation of selected genes previously shown to have roles in atrophy. Trim63 (MuRF1), Fbxo32 (MAFbx), Ubc, Ctsl, Runx1, Tnfrsf12a (Tweak receptor), and Cxcl10 (IP-10) showed increased Bcl-3 binding to κB sites in unloaded muscle and thus were direct targets of Bcl-3. p50 binding to the same sites on these genes either did not change or increased, supporting the idea of p50:Bcl-3 binding complexes. p65 binding to κB sites showed decreased or no binding to these genes with unloading. Fbxo9, Psma6, Psmc4, Psmg4, Foxo3, Ankrd1 (CARP), and Eif4ebp1 did not show changes in p65, p50, or Bcl-3 binding to κB sites, and so were considered indirect targets of p50 and Bcl-3. This work represents the first study to use a global approach to identify genes required to produce the atrophied phenotype with disuse.
Project description:The innervation of skeletal myofibers exerts a crucial influence on the maintenance of muscle tone and normal operation, but little is known concerning atrophy and its underlying mechanisms in denervated muscle to date. Here, we reported that activated NOD-like receptor protein 3 (NLRP3) inflammasome with pyroptotic cell death occurred in denervated gastrocnemius in the mouse model of sciatic denervation. This damage causes interleukin 1 beta (IL-1β) release,facilitating the ubiquitin proteasome system (UPS) activation, which was responsible for muscle proteolysis. Conversely, genetic knock-out of muscular NLRP3 inhibited the pyroptosis-associated protein expression and ameliorate muscle atrophy significantly. Meanwhile, co-treatment with shRNA-NLRP3, also remarkably attenuated NLRP3 inflammasome activator (NIA)-induced C2C12 myotube pyroptosis and atrophy. Interestingly, we also observed a correlation between NLRP3 inflammasome activation and muscular apoptosis possibly via caspase 1 mediation after denervation. This work for the first time elucidates on the roles and mechanisms of NLRP3 inflammasome in skeletal muscle atrophy during denervation and suggests the potential contribution to the pathogenesis of neuromuscular diseases.